NC STATE UNIVERSITY

North Carolina Cooperative Extension Service

College of Agriculture and Life Sciences Prestage Department of Poultry Science Scott Hall / Campus Box 7608 Raleigh, NC 27695-7608

919.515.2621 (phone) 919.515.7070 (fax)

SINGLE CYCLE REPORT OF THE FORTIETH NORTH CAROLINA LAYER PERFORMANCE AND MANAGEMENT TEST¹

Vol. 40, No. 4 September 2018

The North Carolina Layer Performance and Management Tests are conducted under the auspices of the North Carolina Layer Performance and Management Program, Prestage Department of Poultry Science, Cooperative Extension Service at North Carolina State University and the North Carolina Department of Agriculture and Consumer Services. The flock is maintained at the Piedmont Research Station-Poultry Unit, Salisbury, North Carolina. Mrs. Teresa Herman is Piedmont Research Station Superintendent; Mrs. Kelly Brannan is Poultry Unit Manager of the flock; Dr. Ramon D. Malheiros, Research Associate, is coordinator of data compilation and statistical analysis, and Dr. K. E. Anderson is Project Leader. The purpose of this program is to assist poultry management teams in evaluation of commercial layer stocks and management systems.

The data presented here represents the analysis of the single production cycle of the 40th North Carolina Layer Performance and Management Test. Performance summary tables are available for each strain and production system tested. Single production cycle data were collected for 18 strains and 5 production systems: Conventional Cage, Colony Housing System, Enriched Colony Housing System, Cage Free, and Free Range.

Copies of current and past reports are maintained for public access at http://www.ces.ncsu.edu/depts/poulsci/tech_manuals/layer_reports/40_first_cycle.report.pdf .

For further information, contact:

Dr. Kenneth E. Anderson Poultry Science Department North Carolina State University Box 7608 Raleigh, NC 27695-7608 Phone (919) 515-5527; Fax (919) 515-7070 kanderso@ncsu.edu

¹The use of trade names in this publication does not imply endorsement by the North Carolina Cooperative Extension Service of the products named nor criticism of similar ones not mentioned.

40th NORTH CAROLINA LAYER PERFORMANCE AND MANAGEMENT TEST Volume 40 No. 4

Report on the Single Laying Cycle

DESCRIPTION OF DATA TABLE STATISTICS

Single cycle performance data for white and brown-egg strains in the 5 production systems are reported for hens 17-89 weeks of age. Data for Conventional Cage System are reported in Tables 10 to 17. Data for the Colony Housing System and the Enriched Colony Housing System for the same time periods are in Tables 18 to 25. Cage Free and Free Range Data are in Tables 26 to 37. Mortality Summary data are in Table 38.

Index of Tables	Page
Table 1. 40th North Carolina Layer Performance and Management Test Strain Code Assignments.	8
Table 2. Replicate Numbers and Hen Populations in the 5 experimental housing systems: Colony Housing, Enriched Colony Housing, Conventional Cage, Cage-free, and	
Free-range	11
Table 3. Layer House Lighting Schedules	13
Table 4. Minimum Daily Intake of Nutrients Per Bird at Various Stages of Production	14
Table 5: Layer Feeding Program	14
Table 6. Laying Periods Feed Formulations D through G	15
Table 7. Three-year Regional Average Egg Prices	16
Table 8. USDA Egg Weights Used to Establish the Egg Size Distribution	17
Table 9. Average Contract Feed Prices for Feed Purchases During the Single Cycle	17
Table 10. Effect of White-egg Strain on Performance of Hens (17-89 wks) in Conventional Cages	19
Table 11. Effect of White-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in Conventional Cages	20
Table 12. Effect of White-egg Strain on Egg Quality, Income and Feed Costs for Hens (17-89 wks) in Conventional Cages	21
Table 13. Effect of Brown-egg Strain on Performance of Hens (17–89 wks) in Conventional Cages	22
Table 14. Effect of Brown-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17–89 wks) in Conventional Cages	23
Table 15. Effect of Brown-egg Strain on Egg Quality, Income and Feed Costs of Hens (17-89 wks) in Conventional Cages	24

Table 16. Effect of White-egg Strain on Body Weight of Hens (17-89 wks) in Conven- tional Cages	25
Table 17. Effect of Brown-egg Strain on Body Weight of Hens (17-89 wks) in Conventional Cages	26
Table 18. Effect of White-egg Strain and Housing System on Performance of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System	27
Table 19. Effect of White-egg Strain and Housing System on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System.	28
Table 20. Effect of White-egg Strain and Housing System on Egg Quality, Income and Feed Costs for Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System.	29
Table 21. Effect of Brown-egg Strain and Housing System on Performance of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System	30
Table 22. Effect of Brown-egg Strain and Housing System on Egg Weight and SizeDistribution of Eggs Produced by Hens (17-89 wks) in a Colony HousingSystem and an Enriched Colony Housing System	31
Table 23. Effect of Brown-egg Strain and Housing System on Egg Quality, Income and Feed Costs for Hens (17-89 wks) in a Colony Housing System and an riched Colony Housing System	32
Table 24. Effect of White-egg Strains on Body Weight of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System	33
Table 25. Effect of Brown-egg Strains on Body Weight of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System	34
Table 26. Effect of White-egg Strain on Performance of Hens (17-89 wks) in a Cage-free System.	35
Table 27. Effect of White-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in a Cage-free System	36
Table 28. Effect of White-egg Strain on Egg Quality, Income and Feed Costs for Hens(17-89 wks) in a Cage-free System	37
Table 29. Effect of Brown-egg Strain on Performance of Hens (17–89 wks) in a Cage-free System	38
Table 30. Effect of Brown-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17–89 wks) in a Cage-free System	39
Table 31. Effect of Brown-egg Strain on Egg Quality, Income and Feed Costs for Hens (17–89 wks) in a Cage-free System	40
Table 32. Effect of White-egg Strain on Body Weight of Hens (17-89 wks) in a Cage-free System.	41
Table 33. Effect of Brown-egg Strain on Body Weight of Hens (17-89 wks) in a Cage-free System.	42
Table 34. Effect of Egg Strain on Performance of Hens (17–89 wks) in a Free-range System.	43

Table 35. Effect of Egg Strain on Egg Weight and Egg Size Distribution of Hens (17–89 wks) in a Free-range System	44
Table 36. Effect of Egg Strain on Egg Quality, Income and Feed Costs for Hens (17–89 wks) in a Free-range System.	45
Table 37. Effect of Egg Strain on Body Weight of Hens (17-89 wks) in a Free-range System.	45
Table 38. Causes of Mortality by House/Environment as Determined by Postmortem examination	46
Table 39. Entries in the 40th NCLP&MT by Breeder, Stock Suppliers, and Categories	109

Production data for hens 17-89 weeks of age in a Conventional Cage System are reported in Figures 1 to 17. Data for a Colony Housing System and an Enriched Colony Housing System are reported in Figures 18 to 34. Data for a Cage-free System are reported in Figures 35 to 49, and data for a Free-range System are in Figures 50 to 53. Mortality data are in Figures 54 to 58.

Index of Figures	Page
Figure 1. Bovans White, Bi-weekly Hen-day Egg Production and Period Feed Consump- tion for White-Egg Hens in Conventional Cages (69 in ²)	48
Figure 2. Shaver, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	49
Figure 3. Dekalb, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	50
Figure 4. Babcock, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	51
Figure 5. B-400, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	52
Figure 6. Hy-Line W-80, Bi-weekly Hen-day Egg Production and Period Feed Consump- tion for White-Egg Hens in Conventional Cages (69 in ²)	53
Figure 7. Hy-line W-36, Bi-weekly Hen-day Egg Production and Period Feed Consump- tion for White-Egg Hens in Conventional Cages (69 in ²)	54
Figure 8. Lohmann, LSL-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	55
Figure 9. H&N "Nick Chick", Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	56
Figure 10. Novogen Novowhite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in Conventional Cages (69 in ²)	57
Figure 11. Bovans Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in Conventional Cages (80 in ²)	58
Figure 12. ISA Brown, Bi-weekly Hen-day Egg Production and Period Feed Consump- tion for Brown Egg Hens in Conventional Cages (80 in ²)	59

Figure 13. Hy-Line Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in Conventional Cages (80 in ²)	60
Figure 14. Hy-Line Silver Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in Conventional Cages (80 in ²)	61
Figure 15. Lohmann "LB-Lite", Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in Conventional Cages (80 in ²)	62
Figure 16. Novogen Novobrown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in Conventional Cages (80 in ²)	63
Figure 17. TETRA Americana Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in Conventional Cages (80 in ²)	64
Figure 18. Bovans White, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	66
Figure 19. Shaver, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	67
Figure 20. Dekalb, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	68
Figure 21. Babcock, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	69
Figure 22. B-400, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	70
Figure 23. Hy-line W-80, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	71
Figure 24. Hy-Line W-36, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	72
Figure 25. Lohmann LSL-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	73
Figure 26. H&N "Nick Chick", Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	74
Figure 27. Novogen Novowhite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in ²)	75
Figure 28. Bovans Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	76

Figure 29. ISA Brown, Bi-weekly Hen-day Egg Production and Period Feed Consump- tion for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	77
Figure 30. Hy-Line Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	78
Figure 31. Hy-Line Silver Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	79
Figure 32. Lohmann LB-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	80
Figure 33. Novogen Novobrown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	81
Figure 34. TETRA Americana Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (80 in ²)	82
Figure 35. Dekalb, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	84
Figure 36. Babcock, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	85
Figure 37. Hy-Line W-80, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	86
Figure 38. Hy-Line W-36, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	87
Figure 39. Hy-Line White Experimental, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	88
Figure 40. Lohmann LSL-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	89
Figure 41. H&N "Nick Chick", Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	90
Figure 42. Novogen Novowhite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for White-Egg Hens in a Cage-free System (177 in ²)	91
Figure 43. Bovans Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Cage-free System (177 in ²)	92
Figure 44. ISA Brown, Bi-weekly Hen-day Egg Production and Period Feed Consump- tion for Brown-Egg Hens in a Cage-free System (177 in ²)	93
Figure 45. Hy-Line Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Cage-free System (177 in ²)	94
Figure 46. Hy-Line Silver Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Cage-free System (177 in ²)	95
Figure 47. Lohmann LB-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Cage-free System (177 in ²)	96

Figure 48. Novogen Novobrown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Cage-free System (177 in ²)	97
Figure 49. TETRA Americana Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption for Brown-Egg Hens in a Cage-free System (177 in ²)	98
Figure 50. Hy-Line White Experimental, Bi-weekly Percent Egg Production and Period Feed Consumption for White-Egg Hens in a Free-range System (177 in ²)	100
Figure 51. Hy-Line Brown, Bi-weekly Percent Egg Production and Period Feed Consumption for Brown-Egg Hens in a Free-range System (177 in ²)	101
Figure 52. Hy-Line Silver Brown, Bi-weekly Percent Egg Production and Period Feed Consumption for Brown-Egg Hens in a Free-range System (177 in ²)	102
Figure 53. Lohmann LB-Lite, Bi-weekly Percent Egg Production and Period Feed Consumption for White-Egg Hens in a Free-range System (177 in ²)	103
Figure 54. Causes of Mortality for Layers in a Conventional Cage System as Determined by Postmortem Examination	104
Figure 55. Causes of Mortality Combined for Layers in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) as Determined by Postmortem Examination	105
Figure 56. Causes of Mortality in a Cage-free System as Determined by Postmortem Examination	106
Figure 57. Causes of Mortality in a Range-free System as Determined by Postmortem Examination	107
Figure 58. Summary of Causes of Mortality for Layers According to Housing System	108

Dates of Importance:

Eighteen strains were accepted or acquired in accordance with the rules and regulations of the test. The eggs were placed into trays and set on May 10, 2016 and were pulled from the hatchers on June 1, 2016. Eleven commercial white-egg strains and 7 commercial brown-egg strains participated in the current test. Table 1 shows the strains included, the source of the laying stock (Breeder), and the 5 test environments (Conventional Cage, Colony Housing System, Enriched Colony Housing System, Cage-free System, and Free-range System). This report covers the 5 production systems used for the single laying cycle data collection.

Experimental Components of Importance:

Samples of fertile eggs provided from the breeding Companies were set and hatched concurrently as described in the hatch report (Hatch/Serology Report Vol. 40, No. 1. At hatch, the chicks were sexed according to breeder recommendations, (*i.e.* feather, color, or vent sexing) to remove the males.

Strain No.	Source of Stock	Source Code	Strain	Participation ¹	
1	ISA	ISA	Bovans White	C, CS, ECS	
2	ISA	ISA	Shaver White	C, CS, ECS	
3	ISA	ISA	Dekalb White	C, CS, ECS, CF	
4	ISA	ISA	Babcock White	C, CS, ECS, CF	
5	ISA	ISA	B 400 White	C, CS, ECS	
6	Hy-Line	HL	W-80	C, CS, ECS, CF	
7	Hy-Line	HL	W-36	C, CS, ECS, CF	
8	Hy-Line	HL	White Exp	CF, R	
9	Lohmann	L	LSL Lite	C, CS, ECS, CF	
10	H&N	H&N	H&N Nick Chick	k C, CS, ECS, CF	
11	Novogen	Ν	Novowhite	C, CS, ECS, CF	
12	ISA	ISA	Bovans Brown	C, CS, ECS, CF	
13	ISA	ISA	ISA Brown	C, CS, ECS, CF	
14	Hy-Line	HL	Brown	C, CS, ECS, CF, R	
15	Hy-Line	HL	Silver Brown	C, CS, ECS, CF, R	
16	Lohmann	L	LB Lite	C, CS, ECS, CF, R	
17	Novogen	Ν	Novobrown	C, CS, ECS, CF	
18	Tetra Americana	TA	TETRA Brown	C, CS, ECS, CF	

Table 1. 40th North Carolina Layer	Performance and Management Test
Strain Code Assignments	

¹ Identifies the test environments each strain participated in: Conventional Cage=C; Colony Housing System=CS; Enriched Colony Housing System=ECS; Cage-Free=CF; Free-Range=R.

The single cycle production records of the laying phase commenced at 17 weeks of age (August 28, 2016) and continued through 89 weeks of age (March 14, 2018). This report includes production data summarized for 17 to 89 weeks for each production system tracked as well as changes in body weights and mortality.

Test Design:

The rearing phase took place in the pullet brood/grow environments. The pullets for either white- or brown-egg strains were randomly assigned to the replicates in a restricted randomized manner in House 8 for those birds destine to some form of cage facility, House 4 for cage-free rearing and Range houses 1-3 for the free-range birds. The randomization requires that all strains were about equally represented in all rooms, rows, and levels, as described earlier under the experimental design. At the conclusion of the 16-wk rearing phase, the pullets were moved to a Conventional Cage, Colony Housing or Enriched Colony Housing System, and then transitioned to the laying phase.

At the initiation of the layer test, the strains of white and brown-egg hens were equally represented in each test environment. With the Cage-free and Free-range Systems, pullets were housed in the same location for both the rearing and laying phases. The arrangement for the laying test involved a completely randomized design and the main effects were set up in a factorial arrangement. The main effects within Houses 4, 5 and 7 and Range Houses 1-3 were strain (18) and production system (5). Not all strains were tested in each of the production systems.

Pullet Housing and Management:

<u>Housing</u>: The hens used in this study were reared in an environment similar to what they would be in during the laying phase (40th NCLP&MT Grow Report, Vol. 40, No. 2). Depending on the production system, white-egg strains occupied approximately 60% of cage replicates, and brown-egg strains occupied the other 40 % in accordance with the # of white-egg strains and brown-egg strains being tested. Individual hens were identified by strain assignment codes that indicated the cage arrangement, replicate identification numbers, and the strain. Brood grow House 8 was used to rear the pullets for the conventional cage, colony housing system, and the enriched colony housing system. The PI and Unit Manager maintained strain codes for identification of birds and record keeping. Birds were individually tagged at hatch for rearing. Pullets were fed *ad libitum*, and feed consumption and body weights were monitored bi-weekly beginning at 2 weeks of age. All mortality was recorded daily, but mortality attributed to the removal of males (sex slips) and accidental deaths from a replicate have been excluded from the 40th NCLP&MT Grow Report.

<u>Pullets for Conventional Cage, Colony, and Enriched Colony Housing (House 8)</u> Pullets were reared in an environmentally controlled, windowless brood/grow facility with 3 banks of quad-deck cages in each of 4 rooms. Each room, cage row, and cage section within each row and level per row was assigned a unique replicate number. For statistical analysis, each room was designated a block. Rooms 2-4 each contained 72 replicates (4 cages/rep) for a total of 3,744 pullets per room. Room 1 contained 19 replicates and a total of 988 pullets. Overall, House 8 contained a total of 12,220 pullets. On the day of hatch, each cage (24 in x 26 in, 61 cm x 66 cm) was filled with 13 pullets of a single white-egg or brown-egg strain for a rearing allowance of 48 in² (310 cm²) per bird. Four cages constituted a replicate, and there were 14 replicates per strain. Seventeen of 18 test strains were included (Table 1). All chicks were brooded in the same cage during the entire 16 week rearing period. For the first 7 days, paper was placed on the cage floor within each of the replicate series within each row. After 7 days, paper was removed.

<u>Pullets for Cage-free Housing (House 4)</u> Cage-free pullets were housed in an environmentally controlled, windowless high-rise house (4) modified to accommodate 36 replicates of a cage-free egg production system. The house was set up to provide whole-house heat capabilities to serves the dual purpose of brood/grow and production of the cage-free birds. The house was divided into 36 pens (8 ft x 10 ft or 2.43 m x 3.05 m). Sixty five chicks were added to each pen to produce a rearing allowance of 177 in²/pullet (1142 cm²/pullet) and reared following a protocol as similar as possible to the protocol for cage-reared pullets. The slats were covered with landscape cloth and a layer of wood shavings. The litter was removed at 6 wks so the pullets could become accustomed to slats after the brooding period. Pullets were provided 13 cm of roosting space per bird. Feeder and waterer space were designed to meet UEP Guidelines for cage-free facilities. Fifteen of 18 test strains were included (Table 1).

<u>Pullets for Free-range Housing (Range Huts 1-3)</u> Free-range pullets were reared on litter in range huts designed for whole-house heat capabilities. Sixty five chicks were started in each pen 12.1 ft x 6.6 ft (4 m x 2 m) to produce a rearing allowance of 177 in² or 1142 cm² per pullet. The slats were covered with landscape cloth and a layer of wood shavings. The litter was removed at 6 wks so the pullets could become accustomed to slats after the brooding period. Pullets were provided 5.1 in (13 cm) of roosting space per bird. The range houses had timers for light control and supplemental propane heaters for brooding. Heat was provided until the birds were fully feathered and during cool conditions to

maintain an interior house temperature within the Thermal Neutral Zone (TNZ) where body temperature was maintained. At 12 weeks of age, the range pullets were allowed access to their respective range paddocks where the completion of the rearing was done. They had free access to the outdoors throughout the day and night but were enticed to return to the range house during the dark for roosting and protection. Husbandry, lighting and supplemental feed were allocated on the same basis as flock mates in cage-free and cage housing systems in order to minimize the variables between flock mates. Range density of 60 ft²/hen (5.56 m²/hen) was selected as static equivalency of 721 bird/acre. The range pens were 60 ft x 60 ft (18.3 m x 18.3 m), enclosed by a 6 ft (1.8 m) high fence, and held 60 pullets. In order to facilitate range forage replenishment, each of the paddocks were divided in half with a diagonal fence providing a rotating range density of 30 ft²/hen (2.78 m²/hen), and hens were rotated every 4 wks. One week prior to rotation, the replenished paddocks were mowed to an approximate height of 6 in (15 cm). Hen movement was controlled by an access gate. The veranda area was 10 ft x 15 ft (3.04 m x 4.6 m) shaded, bare dirt. Each range pen had 8 nipple drinkers inside the range house and 8 nipple drinkers outside. Tube feeders were inside each pen and a covered feeder was outside providing 2.5 in (6.4 cm) of feeder space per pullet. Four of 18 test strains were included (Table 1).

Layer Housing:

At 16 wks, when transferred to the laying house, each pullet was retagged to identify with the laying house replicate number: row, level and replicate that identifies the strain to the unit manager and PI (Table 2).

Pullet transfer to laying houses (#7 for C and #5 for CS and ECS) was done in accordance with NC State University's IACUC approved methods. The pullets in the CF and R Systems remained in their pens, but the hen populations were set at 60 hens, and hens were tagged with the laying phase identification. The pullets were randomly assigned by strains to the replicates in a way that replicates of white-egg and brown-egg strains were intermingled throughout the houses. The houses contained a feeder system that allowed determination of feed consumption by replicate and layer diet fed. Laying Hen Facilities utilized in this test consisted of 5 houses containing the C, ECS, CS, CF, and R systems (Table 2). The density in the ECS, CS, and C systems were the same: 69 in² (445 cm²) for white-egg strains and 80 in² (516 cm²) for brown-egg strains. All hens in the CF and R systems were at the same pen density, 177 in² (1,142 cm²).

Conventional Cages were in a standard height, windowless, enclosed force-ventilated laying house (#7). The cages consisted of 4 rows of a Conventional Cage system, Tri-Deck Stacked Layer Cage System, Battery Style with Manure Belts. There was 60 ft (18.3 m) of cage row with each side being designated a row. Each row was divided into six 10-ft (3 m) cage-row sections with two 16 in high x 2 in deep x 4 in wide (40.6 cm x 5.1 cm x 10.2 cm) cages per section and a 2-ft (0.61 m) space between cage sections for feed hoppers and feed recovery. This cage design provided for 144 experimental units, each consisting of 2 cages.

The bird population was held constant at 14 white-egg strain hens/cage (69 in²/hen, 445 cm²/hen) for 28 hens/replicate and 12 brown-egg strain hens/cage (80 in²/hen, 516 cm²/hen) for 24 hens/replicate. Consequently, a total of 3,808 hens were used to test 4 replicates per strain/molt treatment (10 white-egg strains and 7 brown-egg strains in Conventional Cage Housing (Table 2).

House 5 was a standard height, windowless, force-ventilated laying house with battery style cages using a belt manure handling system. There were 4 banks of triple deck cages, two banks used for ECS, and two banks used for CS. Each side of a bank was designated as a row, and each row was divided into nine 10-ft (3 m) cage-row replicates of ECS and CS cages. Cages were 21 in (53 cm) high x 26 in (66 cm) deep x 96 in (244 cm) wide for a total area of 2,496 in² (16,103 cm²) with a 2-ft (0.61 m) space between cage sections for feed hoppers and feed recovery. The Colony Housing System (CS) and the Enriched Colony Housing System (ECS) were the same dimensions and housed in the same building . The CS was a barren colony cage whereas the ECS had a nesting area, roosts and a scratch area. In both the CS and ECS Systems, the bird population was held constant at 36 white-egg strain hens per cage (69 in² or 445 cm², per hen) or 31 brown-egg strain hens per cage (80 in² or 516 cm² per hen). In House 5, the total population was 7,356 hens used to test replicates: 132 per white-egg strain and 84 replicates per brown-egg strain (Table 2).

House	Cage	Egg Color	Molt	Number	Hens per	Hen	Total
	Style ¹		Trtmt ²	of	replicate	No.	Hens
				Replicates			
5	CS	White	NM	33	36	1,188	
5	ECS	White	NM	33	36	1,188	
5	CS	White	NA	33	36	1,188	
5	ECS	White	NA	33	36	1,188	$4,752^{3}$
5	CS	Brown	NM	21	31	651	
5	ECS	Brown	NM	21	31	651	
5	CS	Brown	NA	21	31	651	
5	ECS	Brown	NA	21	31	651	$2,604^4$
7	С	White	NM	44	28	1,232	
7	С	White	NA	44	28	1,232	
7	С	Brown	NM	28	24	672	
7	С	Brown	NA	28	24	672	3,808 ⁵
4	CF	White	NM	16	60	960	
4	CF	Brown	NM	14	60	840	$1,800^{6}$
R1	R	White	NM	2	60	120	
R1	R	Brown	NM	2	60	120	
R2	R	Brown	NM	4	60	240	4807

 Table 2. Replicate Numbers and Hen Populations in the 5 Experimental Housing Systems:

 Colony Housing, Enriched Colony Housing, Conventional Cage, Cage-free, and Free-range

¹Conventional Cage=C; Colony Housing System=CS; Enriched Colony Housing System=ECS; Cage –free=CF; Free-range=R

²Molt treatment: NA=Non-anorexic molt, NM=Non molted

³White-Egg Strains, NM or NA in CS or ECS

⁴Brown-Egg strains, NM or NA in CS or ECS

⁵White-Egg Strains and Brown-Egg Strains NM or NA in C

⁶White-Egg and Brown-Egg Strains NM in CF

⁷White-Egg and Brown Egg-Strains NM in R

The Cage-free (CF) housing for the laying phase was in the same house (#4) and pens used for the rearing phase (8 ft x 10 ft or 2.43 m x 3.05 m). The house was set up to provide house-heat capabilities due to the low density in the house and heat production of the cage free birds The number of birds per pen was adjusted to 60 hens to provide a minimum of 177 in² or 1,142 cm² per pullet with the feeder space deducted. Hens were provided 6.3 in (16 cm) of roosting space per bird. Feeder and waterer spaces were designed to meet UEP Guidelines for cage-free facilities. Nesting space was 1 nest per 5 hens.

The Free-range (R) housing for the laying phase was in the same curtain-sided range huts (R1, R2, R3) and pens that were used for the rearing phase. To match the CF system, the number of hens per pen (8 ft x 10 ft, 2.43 m x 3.05 m) was adjusted to 60 to provide a minimum of 177 in² or 1.142 cm² per hen with the feeder space deducted. Hens were provided 6.3 in (16 cm) of roosting space per bird. The range houses had timers for light control and supplemental propane heaters for heating. The heaters were set to maintain a minimum temperature of 45°F. Heat was provided during cool conditions to maintain an interior temperature within the Effective Thermal Neutral Zone (ETNZ) where body temperature can be maintained without altering the basic metabolic rate. Hens had free access to their respective outdoor range paddocks throughout the day and night, but were enticed to return to the range house during the dark for roosting and protection. The hens accessed the range through an18 in x 18 in (46 cm x 46 cm) pophole. Husbandry, lighting and supplemental feed wereallocated on the same basis as for flock mates in cage-free and cage systems in order to minimize the variables between flock mates. Range density was based upon research of 721 bird/acre static equivalency. The range pens were 60 ft x 60 ft, 3,600 ft² (18.3 m x 18.3 m, 335 m²) and were enclosed by a 6 ft (1.8 m) high fence. In order to facilitate range forage replenishment, each of the paddocks was divided in half providing a rotating range density of 30 ft²/hen (2.78 m²/hen), and hens were rotated every 4 wks. One week prior to rotation, the replenished paddocks were mowed to an approximate height of 6 in (15 cm). Hen movement was controlled by an access gate. As was done in the rearing phase, birds were rotated every 4 wks. One week prior to rotation, the replenished paddocks were mowed to an approximate height of 6 in (15 cm). Hen movement between paddocks was controlled by an access gate. The veranda area was 10 ft x15 ft (3.04 m x 4.6 m) of shaded, bare dirt. Each range pen had 8 nipple drinkers inside and 8 nipple drinkers outside. Tube feeders were inside each pen and a covered feeder was outside providing a total of 6.4 cm of feeder space per pullet.

Lighting

The lighting periods for the hens in the C, CS, and ECS controlled environment facilities increased with hen age (Table 3).

FDA Egg Safety Testing

In accordance with the Egg Safety Rule and the NCLP&MT Egg Safety Plan, the birds in the cage, cage-free and range environments were tested for the presence of *Salmonella enteritidis* when pullets were between the ages of 14 and 16 weeks and layers were between the ages of 40 and 44 weeks. Environmental swabs were collected in accordance with our FDA Egg Safety Plan.

Age	Date	Photo Period ¹
(weeks)		(Daylight hrs)
16-17	Sept. 21, 2016	10.0
17	Sept. 28, 2016	11.0
18	Oct. 5, 2016	11.5
19	Oct. 12, 2016	12.0
20	Oct. 19, 2016	12.5
21	Oct. 26, 2016	13.0
22	Nov. 2, 2016	13.5
23	Nov. 9, 2016	14.0
24	Nov. 16, 2016	14.25
25	Nov. 23, 2016	14.5
26	Nov. 30, 2016	14.75
27	Dec. 7, 2016	15.0
28	Dec. 14, 2016	15.25
29	Dec. 21, 2016	15.5
30	Dec. 28, 2016	15.75
31-89	Mar. 14, 2017	16.0
Anth NICE DO ME		

Table 3. Layer House Lighting Schedules

40th NCLP&MT

¹Supplemental lighting schedules were the same for C, CS, ECS, CF and R hens. Range hens also had natural light

²Light intensity was 0.5 to 0.7 ft candle at the second tier, except for range hens which had natural light

<u>Salmonella Enteritidis assessment</u>- On Monday, November 27, 2017, 23 environmental swabs were received at the lab from NC State University's Prestage Department of Poultry Science (PI – Anderson) for Salmonella Enteritidis assessment of the 40th NCLP&MT. All swabs were pre-enriched overnight in sterile buffered peptone water (37°C). Aliquots from each sample were then transferred to both TT and RV selective-enrichment broths overnight (42°C). Selective enrichments were then struck onto both BGS and XLT-4 selective agars. Twenty-two samples were negative on both BGS and XLT-4. Therefore, no further transfers were required for these samples. One sample was positive on both TT and RV enriched XLT-4. The sample was subsequently positive on LIA and TSI slants for general *Salmonella* spp. and latex agglutination as well. However, the sample was negative for Group D agglutination so it was not *Salmonella enteritidis*. Both negative and positive controls grew appropriately through each stage of growth.

Layer Nutrition

Layer diets were identified as Diets D, E, F, G, H, I, M, N, and O which consisted of a pre-lay diet and a series of layer diets formulated to assure a daily protein, mineral and amino acid intake as shown below. Feed was offered *ad libitum* in accordance with the guidelines that all birds should receive acceptable nutrient intake at all times depending on the bird's age and production rate as shown in the Laying House Feeding Program (Tables 4-6).

		Stage ¹		
Daily Intake	Pre-Peak > 87%	87-80%	80-70%	<70%
White-Egg Layers				
Protein ² (g/day)	19.00	18.0	17.00	16.00
Calcium (g/day)	4.00	4.10	4.20	4.30
Lysine (mg/day	820.00	780.00	730.00	690.00
TSAA (mg/day)	700.00	670.00	630.00	590.00
Brown-Egg Layers				
Protein ² (g/day)	20.00	19.00	18.00	17.00
Calcium (g/day)	4.00	4.00	4.10	4.20
Lysine (mg/day	830.00	820.00	780.00	730.00
TSAA (mg/day)	710.00	700.00	670.00	630.00

Table 4. Minimum Daily Intake of Nutrients Per Bird at Various Stages of Production

40th NCLP&MT

¹Predicted Production, as determined by Hen-Day Egg Production

²If the egg production was higher than predicted values, protein intake was increased by 1%

Table 5: Layer Feeding Program

	Consumption	Diet Fed			
Rate of Production	(kg/100 Birds/Day)	White-egg Strains	Brown-egg Strains		
Pre-production					
(15-17 wks)	< 9.52	D	D		
Pre-Peak and > 90%	< 9.52 - 10.43	D	Е		
	10.43 - 12.20	E	F		
	12.25 - >13.11	F	G		
90-80%	10.43 - 11.29	F	G		
	11.34 - 12.20	G	Н		
	12.25 - >13.11	Н	I		
70-80%	10.43 - 11.29	Н	Ι		
	11.34 - 12.20	Ι	М		
	12.25 - >13.11	М	Ν		
< 70%	10.43 - 11.29	М	Ν		
	11.34 - 12.20	Ν	0		
	12.25 ->13.11	0	0		

40th NCLP&MT

Note: Low house temperatures and egg production higher than breeder guides for any given hen age required an adjustment to the dietary phase feeding program to ensure hens were in a positive nutrient status.

Ingredients	D	E	F	G
	(lbs.)	(lbs.)	(lbs.)	(lbs.)
Corn	879.44	1,166.03	1,202.70	1,240.88
Soybean meal	636.39	564.55	533.71	506.44
Fat (Lard)	10.00	10.00	-	-
D.L. Methionine	3.41	2.92	2.31	2.04
Soybean oil	45.85	25.90	36.29	25.06
Ground Limestone	124.15	122.36	121.69	110.55
Coarse Limestone	70.00	70.00	70.00	75.00
Bi-Carbonate	2.00	2.00	2.00	3.00
Phosphate Mono/D	21.93	21.50	17.93	26.03
Salt	6.96	6.41	5.88	5.00
Vit. premix	1.00	1.00	1.00	1.00
Min. premix	1.00	1.00	1.00	1.00
HyD3 Broiler(62.5 mg/lb)	-	-	0.50	-
Prop Acid 50% Dry	1.00	1.00	1.00	1.00
T-Premix	1.00	1.00	1.00	1.00
0.06% Selenium Premix	1.00	1.00	1.00	1.00
Choline Cl 60%	1.62	1.94	1.59	1.00
Avizyme	1.00	1.00	-	-
Ronozyme P-CT 54%	0.40	0.40	0.40	-
Calculated Analysis				
Protein %	19.43	18.10	17.50	17.00
ME kcal/kg	2,926.00	2,904.00	2,882.00	2,860.00
Calcium %	4.10	4.05	4.00	3.95
A. Phos. %	0.45	0.44	0.40	0.38
Lysine %	1.10	1.00	0.96	0.91
TSAA %	0.80	0.74	0.69	0.66

Table 6. Laying Periods Feed Formulations¹ D through G

40th NCLP&MT ¹ Feed formulations by Dr L. Minear, Consulting Nutritionist, and manufacturing by Land'O Lakes

Data Collection – Terms, Schedule and Procedures:

<u>Age at 50% Production</u> (<u>Maturity</u>)--The first day at which the birds in the individual replicates achieved 50% production.

Breeder (Strain)-- Short identification codes of the breeder and stock (Tables 1)

<u>Body weights</u>--Birds were weighed at the start of the test (17 wks) and end of the single cycle (89 wks). Body weight gain during the single cycle was reported for each strain-test environment.

Egg Income--Egg income per hen housed was calculated using the test's egg production values for the current production year calendar and applying the regional 3-year average egg prices (11/27/2015 to 11/25/2017, Table 7). The prices are for small lots, USDA Grade A and Grade A, white eggs in cartons, from nearby retail outlets of eggs based in North Carolina (USDA-AMS, RA_PY001). The egg income calculation was as follows. The loss eggs were subtracted from the egg numbers then the B and Checks egg numbers were calculated based on their percent of eggs produced and price. The remaining grade A eggs were priced based on the egg size distribution percentages. The egg income was calculated for each replicate for analysis.

Grade	Size	\$/Dozen ¹					
А	Extra Large	1.44					
А	Large	1.40					
А	Medium	1.07					
А	Small	0.78					
A^2	Pee Wee	0.39					
B ³	All	0.74					
Checks ³	All	0.74					

Table 7. Regional Three-year Average Egg Prices

¹Price per dozen calculated from the SE Regional Egg Prices reported to USDA-AMS

²Prices are estimates based upon the formula provided by D.D. Bell (Small x 0.5)

³Prices are estimates based upon the formula provided by D.D. Bell (Large x 0.53)

<u>Egg Production</u>--All eggs that had the potential of being marketed were credited toward the test unit's (replicate's) egg production, regardless of the shell condition at the time of collection. All eggs were collected and recorded daily. Egg production was summarized at 28-day intervals, and was reported on a Hen-Housed and Hen-Day basis.

- 1. Hen Housed Egg Production (per Bird): The total number of eggs produced divided by the number of birds housed.
- 2. Hen Day Egg Production: The average daily number of eggs produced per 100 hens (%)

Egg Weight--At 28-day intervals, all eggs produced in the previous 24-hour period were weighed and sorted by size (See egg size distribution). Average egg weight (g/hen), and egg mass (g), as well as percentages of eggs within each size category were reported.

1. Egg Mass: The average daily production of egg mass in grams per hen day.

2. Egg Weight: The average egg weight (g) for each period sampled. Weight of all eggs collected from previous 24 hours divided by the number of eggs collected.

<u>Egg Quality</u>--At 28-day intervals, all eggs produced within the previous 24 hours were examined by candling light and graded according to current USDA standards for egg quality. Eggs were graded in the pilot processing facility and handled as they would be in a commercial off-line facility.

Egg Size Distribution--At 28-day intervals, all eggs produced within the previous 24 hours were weighed and sorted according to current USDA standards for egg size classifications (Table 8). There was blending of egg size in this test using the weight cutoff of 23.5 g between medium and large eggs. This maximizes the number of USDA large eggs just as would occur in a commercial plant. Size distribution was reported as the proportion of eggs falling into each size category.

Size Category	Ounces ¹ /Dozen	Grams/Egg
Pee Wee	< 18	<42.6
Small	18 - 21	42.6 < 56.8
Medium	21 - 24	49.7 < 56.8
Large	24 - 27	56.8 -63.9
Extra Large	> 27	>63.9

Table 8. USDA Egg Weights Used to Establish the Egg Size Distribution

 $^{1}1$ oz. = 28.4 g

<u>Feed Consumption</u> -- All feed offered for consumption was recorded for each replicate. At 28-day intervals, feed not consumed was weighed back to calculate daily feed consumption (kg feed/100 hens/day). Values were combined to determine overall feed consumption between 17 - 89 wks expressed in units of daily feed intake.

<u>Feed Conversion</u>--The grams of eggs produced per gram of feed consumed calculated at 28-day intervals.

Single ejele	
Diets	Price (\$) / Ton
D	338.60
Е	327.15
F	319.24
G	307.34
Н	299.67
I	306.38

Table 9. Average Contract Feed Prices for Feed Purchases during the
Single Cycle

<u>Feed Costs</u>--Calculation of feed cost per hen housed using the kilograms of feed consumed and the average price of each diet per ton based on the actual feed prices for each feed delivery. Calculated costs for the complete production cycle (Table 9).

<u>Grade Information</u>-- The average grade, according to USDA grading standards, of all eggs sampled over all sampling periods. Grades were determined by personnel trained in accordance with the USDA grading standards (USDA Egg Grading Manual).

<u>Mortality</u>--All mortalities were recorded daily, and when possible, the potential causes of the mortalities were documented. Mortalities due to obvious accidents were not included in numbers reported. Veterinarians collected mortality samples for necropsy at intervals during the single cycle, and percent mortalities during Single Cycle (17-89 wks) were reported separately (Table 38 and Figures 54-58).

Statistical Analyses and Separation of Means:

All data were subjected to ANOVA testing utilizing the GLM procedure of JMP with main effects of strain, density, and production system used herein. Separate analyses were conducted for white and brown-egg strains, the densities within production systems, and between the conventional cage, colony housing system and enriched colony housing system. Significant differences (P < 0.01) within white and brown-egg strains were noted by differing letters among columns of means. First and second order interactions were tested for significance. The LS Means from the GLM Procedure were separated via the PDIFF option.

Breeder	Density ¹	Feed Consumption	Feed Conversion	Eggs per Bird Housed	Hen-Day Egg Production ²	Egg Mass	Mortality	Age at 50% Production
(Strain)	(in ² /hen)	(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ³	(%)	(Days)
Bovans White	69	10.18 ^{bcde}	0.50	408.46 ^{ab}	86.08	51.62	8.93	141 ^{abc}
Shaver White	69	10.02 ^{cdef}	0.53	412.17 ^{ab}	88.82	53.35	20.54	134°
Dekalb White	69	10.78°	0.50	444.80 ^a	89.25	54.52	9.82	140 ^{abc}
Babcock White	69	10.41 ^{abcd}	0.52	439.73 ^{ab}	89.71	55.09	8.04	139 ^{bc}
ISA B-400	69	9.64 ^f	0.55	427.00 ^{ab}	88.70	53.74	6.25	139°
Hy-Line W-80	69	9.97 ^{def}	0.51	399.36 ^{ab}	86.25	51.67	14.29	142 ^{abc}
Hy-Line W-36	69	9.79 ^{ef}	0.51	404.40 ^{ab}	82.91	50.26	3.57	143 ^a
Lohmann LSL Lite	69	10.40 ^{abcd}	0.51	401.17 ^{ab}	85.69	53.86	12.50	143 ^{ab}
H&N Nick Chick	69	10.55 ^{ab}	0.52	404.83 ^{ab}	86.33	55.22	16.07	143 ^a
Novogen Novowhite	69	10.49 ^{abc}	0.50	380.51 ^b	85.17	52.73	23.22	142 ^{abc}
All								
Strains	69	10.22	0.52	412.24	86.89	53.21	12.31	141

Table 10. Effect of White-egg Strain on Performance of Hens (17-89 wks) in Conventional Cages

¹In each test environment (C, CS, ECS), all white-egg strains were housed at the same density (69 in²/hen; 445 cm²/hen)

²The average daily number of eggs produced per 100 hens (%)

 3 HD = hen day

a,b,c,d,e,f - Different letters within the same column denote significant differences (P<0.01) for comparisons made among strains.

		Egg	Pee				Extra
Breeder	Density ¹	Weight	Wee	Small	Medium	Large	Large
(Strain)	(in ² /hen)	(g/egg)	(%)	(%)	(%)	(%)	(%)
Bovans White	69	59.17 ^b	0.11	5.08	4.57	35.54ª	54.70 ^d
Shaver White	69	59.32 ^b	0.20	4.09	3.60	34.33ª	57.78 ^{cd}
Dekalb White	69	60.23 ^{ab}	0.00	4.37	3.73	28.07 ^{abc}	63.82 ^{bcd}
Babcock White	69	60.67 ^{ab}	0.12	3.95	3.22	26.89 ^{abc}	65.82 ^{abco}
ISA B-400	69	59.94 ^b	0.04	3.08	4.67	31.51 ^{ab}	60.69 ^{bcd}
Hy-Line W-80	69	59.01 ^b	0.26	5.26	3.65	34.64 ^a	56.19 ^d
Hy-Line W-36	69	59.73 ^b	0.00	4.52	4.58	30.52 ^{abc}	60.38 ^{bcd}
Lohmann LSL Lite	69	61.79 ^{ab}	0.00	4.13	3.62	21.09 ^{cd}	71.16 ^{ab}
H&N Nick Chick	69	62.80 ^a	0.11	4.07	3.03	14.78 ^d	78.00ª
Novogen Novowhite	69	60.99 ^{ab}	0.00	4.14	3.80	22.49 ^{bcd}	69.57 ^{abc}
All Strains	69	60.36	0.08	4.27	3.85	27.99	63.81

Table 11. Effect of White-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in Conventional Cages.

¹In each test environment (C, CS, ECS), all white-egg strains were housed at the same density (69 in²/hen; 445 cm²/hen) a,b,c,d,- Different letters within the same column denote significant differences (P<0.01), comparisons made among strains

Breeder	Density ¹	Grade A	Grade B	Cracks	Loss	Egg Income	Feed Costs
(Strain)	(in ² /hen)	(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Bovans White	69	91.84	0.48	7.22	0.45	48.02 ^{bc}	18.73
Shaver White	69	91.35	0.82	7.61	0.22	51.11 ^{abc}	18.45
Dekalb White	69	93.18	0.37	6.22	0.22	50.32 ^{abc}	18.76
Babcock White	69	92.37	0.44	7.02	0.16	52.53 ^{ab}	18.33
ISA B-400	69	91.86	0.69	7.31	0.14	50.64 ^{abc}	19.15
Hy-Line W-80	69	93.46	0.50	5.90	0.13	49.37 ^{abc}	19.08
Hy-Line W-36	69	92.75	0.15	6.56	0.24	47.56 ^c	19.18
Lohmann LSL Lite	69	91.15	0.65	7.92	0.27	50.26 ^{abc}	17.85
H&N Nick Chick	69	93.29	0.54	6.06	0.11	52.60 ^a	18.22
Novogen Novowhite	69	93.88	0.64	5.21	0.26	49.41 ^{abc}	19.25
All Strains	69	92.51	0.56	6.70	0.22	50.18	18.70

Table 12. Effect of White-egg Strain on Egg Quality, Income and Feed Costs of Hens (17-89 wks) in Conventional Cages

¹ In each test environment (C, CS, ECS), all white-egg strains were housed at the same density. (69 in²/hen; 445 cm²/hen) a,b,c - Different letters within the same column denote significant differences (P<0.01), comparisons made among strain average values.

Breeder	Density ¹	Feed Consumption	Feed Conversion	Eggs Per Bird Housed	Hen-Day Egg Production ²	Egg Mass	Mortality	Age at 50% Production
(Strain)	(in ² /hen)	(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ³	(%)	(Days)
Bovans Brown	80	10.71 ^{ab}	0.48 ^{ab}	416.12	84.07	52.29 ^{ab}	12.50	140 ^a
ISA Brown	80	10.57 ^{ab}	0.50 ^a	421.36	86.09	53.64 ^a	6.25	140 ^a
Hy-Line Brown	80	10.34 ^b	0.46 ^{ab}	389.82	79.76	48.14 ^b	7.29	139 ^{ab}
Hy-Line Silver Brown	80	10.77ª	0.44 ^b	399.32	80.61	47.33 ^b	7.29	138 ^{ab}
Lohmann LB-Lite	80	10.36 ^b	0.49 ^{ab}	357.20	82.10	50.71 ^{ab}	40.62	137 ^b
Novogen Novobrown	80	10.53 ^{ab}	0.49 ^{ab}	401.06	83.47	52.04 ^{ab}	19.79	140 ^{ab}
TETRA Brown	80	10.64 ^{ab}	0.46 ^{ab}	397.86	81.28	49.72 ^{ab}	11.46	138 ^{ab}
All Strains	80	10.56	0.48	397.88	82.88	50.71	15.03	139

Table 13. Effect of Brown-egg Strain on Performance of Hens (17–89 wks) in Conventional Cages

40th NCLP&MT

¹In each test environment (C, CS, ECS), all brown-egg strains were housed at the same density (80 in²/hen; 516 cm²/hen) ²The average daily number of eggs produced per 100 hens (%)

 3 HD = hen day

a.b - Different letters in the same column denote significant differences (P<0.01), comparisons made among strain average values.

		Egg	Pee				Extra
Breeder	Density ¹	Weight	Wee	Small	Medium	Large	Large
(Strain)	(in ² /hen)	(g/egg)	(%)	(%)	(%)	(%)	(%)
Bovans Brown	80	61.51ª	0.08	2.12	4.93	24.41 ^{bc}	68.46 ^a
ISA Brown	80	61.58ª	0.00	1.58	5.29	22.46 ^c	70.66ª
Hy-Line Brown	80	60.03 ^a	0.00	0.97	5.92	31.53 ^b	61.58ª
Hy-Line Silver Brown	80	58.18 ^b	0.00	2.05	6.63	47.62ª	43.69 ^b
Lohmann LB-Lite	80	61.33ª	0.00	1.93	4.91	25.64 ^{bc}	67.52ª
Novogen Novobrown	80	61.66 ^a	0.34	2.63	3.66	21.47°	71.90ª
TETRA Brown	80	60.75 ^a	0.12	1.75	5.06	28.72 ^{bc}	64.35ª
All Strains	80	60.66	0.08	1.88	5.31	29.28	63.45
ANAL NICT DOMT							

 Table 14. Effect of Brown-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17–89 wks) in Conventional Cages

¹In each test environment (C, CS, ECS), all brown-egg strains were housed at the same density (80 in²/hen; 516 cm²/hen) a,b,c, - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains.

		Grade	Grade			Egg	Feed
Breeder	Density ¹	А	В	Cracks	Loss	Income	Costs
(Strain)	(in ² /hen)	(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Bovans	80	90.05	0.44	9.34 ^a	0.16	47.03	20.21
Brown				h			
ISA Brown	80	92.40	0.63	6.66 ^{ab}	0.32	49.22	19.38
Hy-Line	80	90.10	0.46	9.14 ^{ab}	0.30	44.17	19.08
Brown		,		,			
Hy-Line	80	92.03	0.62	6.71 ^{ab}	0.25	44.11	18.50
Silver Brown							
Lohmann	80	91.07	0.83	7.73 ^{ab}	0.38	46.64	18.79
LB-Lite							
Novogen	80	92.22	1.30	6.24 ^b	0.24	48.54	19.14
Novobrown							
TETRA	80	91.73	0.44	7.83 ^{ab}	0.00	45.88	19.26
Brown							
All							
Strains	80	91.44	0.67	7.66	0.24	46.55	19.20

Table 15. Effect of Brown-egg Strain on Egg Quality, Income and Feed Costs of Hens (17–89 wks) in Conventional Cages

¹ In each test environment (C, CS, ECS), all brown-egg strains were housed at the same density (80 in²/hen; 516 cm²/hen) a,b - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains.

		17-Wk	89-Wk	Single Cycle
Breeder	Density ¹	Body Wt	Body Wt	Wt Gain
(Strain)	(in ² /hen)	(kg)	(kg)	(%)
Bovans White	69	1.10	1.71 ^{ab}	35.6
Shaver White	69	1.16	1.77 ^{ab}	34.5
Dekalb White	69	1.13	1.71 ^{ab}	33.9
Babcock White	69	1.18	1.85 ^a	36.0
ISA B-400	69	1.13	1.67 ^b	32.1
Hy-Line W-80	69	1.16	1.84 ^a	36.4
Hy-Line W-36	69	1.12	1.78 ^{ab}	36.8
Lohmann LSL Lite	69	1.16	1.79 ^{ab}	34.9
H&N Nick Chick	69	1.24	1.81 ^{ab}	31.3
Novogen Novowhite	69	1.13	1.70 ^{ab}	33.05
All				
Strains	69	1.15	1.76	34.5

Table 16. Effect of White-egg Strain on Body Weight of Hens
(17-89 wks) in Conventional Cages

¹ In each test environment (C, CS, ECS), all white-egg strains were housed at the same density (69 in²/hen; 445 cm²/hen)

a,b - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains

(17-89 wks) ir	1 Convention	al Cages		
				Single
		17-Wk	89-Wk	Cycle
Breeder	Density ¹	Body Wt	Body Wt	Wt Gain
(Strain)	(in ² /hen)	(kg)	(kg)	(%)
Bovans	80	1.40	2.05	31.7
Brown				
ISA	80	1.30	2.04	36.3
Brown				
Hy-Line	80	1.40	2.07	32.2
Brown				
Hy-Line	80	1.46	2.14	31.8
Silver Brown				
Lohmann	80	1.40	2.00	29.7
LB-Lite				
Novogen	80	1.39	2.09	33.7
Novobrown				
TETRA	80	1.40	2.07	32.5
Brown				
All				
Strains	80	1.39	2.07	32.6
Strains		1.39	2.07	32.6

Table 17. Effect of Brown-egg Strain on Body Weight of Hens(17-89 wks) in Conventional Cages

40th NCLP&MT

¹ In each test environment (C, CS, ECS), all brown-egg strains were housed at the same density (80 in²/hen; 516 cm²/hen)

No significant differences (P<0.01) with comparisons made among strains

				Eggs	Hen Day			Age at
	Housing	Feed	Feed	Per Bird	Egg	Egg		50%
Breeder	System ¹	Consumption	Conversion	Housed	Production ³	Mass	Mortality	Production
(Strain)		(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ⁴	(%)	(Days)
Bovans	CS	10.78	0.46	366.94	82.85	49.66	28.70	142
White	ECS	10.58	0.48	377.59	86.19	51.39	12.93	140
	Average	10.68 ^{ABC}	0.47	372.27	84.52	50.53	20.82	141 ^{CD}
Shaver	CS	10.20	0.47	359.27	82.49	48.05	47.23	138
White	ECS	10.24	0.50	358.29	86.06	51.05	16.67	137
	Average	10.22^{CDE}	0.48	358.78	84.28	49.88	31.95	137 ^F
Dekalb	CS	11.02	0.45	356.37	82.91	49.82	29.67	141
White	ECS	10.64	0.49	372.66	87.92	52.94	11.10	140
	Average	10.83 ^{AB}	0.47	364.52	85.42	51.38	20.38	140^{DE}
Babcock	CS	10.85	0.47	334.82	83.48	51.14	39.80	138
White	ECS	10.45	0.52	401.21	89.97	54.76	4.67	137
	Average	10.65^{ABC}	0.49	368.02	86.73	52.95	22.23	137 ^F
ISA	CS	10.07	0.45	366.65	77.91	46.48	20.37	139
B-400	ECS	10.14	0.52	384.24	88.69	53.29	14.80	137
	Average	10.11^{DE}	0.49	375.44	83.30	49.88	17.58	138 ^{EF}
Hy-Line	CS	10.67	0.45	358.52	81.21	48.75	27.80	144
W-80	ECS	10.52	0.48	352.21	85.11	51.01	21.30	143
	Average	10.60 ^{BCD}	0.47	355.36	83.16	49.88	24.55	143 ^{ABC}
Hy-Line	CS	9.99	0.49	379.46	82.51	49.58	7.40	144
W-36	ECS	9.87	0.50	370.32	82.76	49.75	3.73	145
	Average	9.93 ^E	0.49	374.89	82.63	49.66	5.57	144 ^A
Lohmann	CS	11.09	0.44	337.52	79.50	49.60	37.03	143
LSL Lite	ECS	10.52	0.50	369.58	86.35	53.55	18.53	143
	Average	10.81 ^{AB}	0.47	353.55	82.92	51.57	27.78	143 ^{ABC}
H&N	CS	11.15	0.45	354.26	79.95	50.37	32.40	144
Nick Chick	ECS	11.05	0.49	360.84	86.52	54.62	26.83	144
	Average	11.10 ^A	0.47	357.55	83.24	52.49	29.62	144 ^{AB}
Novogen	CS	11.07	0.45	361.63	83.42	51.16	37.97	142
Novowhite	ECS	10.52	0.49	368.21	84.98	52.01	19.43	141
	Average	10.80^{AB}	0.47	364.92	84.20	51.58	28.70	142^{BCD}
All	CS	10.69 ^Y	0.46 ^Y	357.54	81.62 ^z	52.43 ^Y	30.84 ^Z	141
Strains	ECS	10.45 ^z	0.50^{2}	371.51	86.46 ^Y	49.53 ^z	15.00 ^Y	141
	Average	10.57	0.48	364.53	84.04	50.98	22.92	141

Table 18. Effect of White-egg Strain and Housing System^{1,2} on Performance of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System

40th NCLP&MT

¹Colony Housing System=CS; Enriched Colony Housing System=ECS

²All white-egg strains were equally represented in each production system, and C, CS and ECS hens were housed at (69 in²/hen; 445 cm^2 /hen).

³The average daily number of eggs produced per 100 hens (%)

 ${}^{4}\text{HD} = \text{hen day}$

A,B,C,D,E,F - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values.

Y,Z – Different letters in the same column denote significant differences (P<0.01), overall comparison of CS vs. ES housing system using average for all strains

	Housing	Egg	Pee				Extra
Breeder	System ¹	Weight	Wee	Small	Medium	Large	Large
(Strain)		(g/egg)	(%)	(%)	(%)	(%)	(%)
Bovans	CS	59.08	1.19	5.11	4.06	31.99	57.65
White	ECS	58.86	0.00	5.12	5.46	35.52	53.90
	Average	58.97 ^C	0.60	5.12	4.76	33.76 ^{ABC}	55.77 ^{CD}
Shaver	CS	58.44	0.11	5.17	4.53	39.04	51.15
White	ECS	58.72	0.05	4.30	5.54	37.06	53.05
	Average	58.58 ^C	0.08	4.73	5.04	38.05 ^B	52.10 ^D
Dekalb	CS	59.29	0.34	5.20	4.18	33.14	57.14
White	ECS	59.44	0.00	4.65	4.35	31.48	59.52
	Average	59.37 ^{BC}	0.17	4.93	4.26	32.31 ^{ABC}	58.33 ^{BCI}
Babcock	CS	60.54	0.00	3.79	4.52	24.77	66.92
White	ECS	60.18	0.05	3.28	5.94	28.45	62.27
	Average	60.36 ^{ABC}	0.03	3.53	5.23	26.61 ^{BCD}	64.60 ^{ABC}
ISA	CS	59.09	0.00	4.60	4.84	34.29	56.26
B-400	ECS	59.42	0.00	4.14	5.66	32.43	57.76
	Average	59.25 ^{BC}	0.00	4.37	5.25	33.36 ^{ABC}	57.01 ^{CD}
Hy-Line	CS	59.11	0.13	6.10	5.16	31.55	57.05
W-80	ECS	59.11	0.42	5.04	5.56	34.76	54.21
	Average	59.11 ^{BC}	0.28	5.57	5.36	33.16 ^{ABC}	55.63 ^{CD}
Hy-Line	CS	59.44	0.00	4.21	6.35	33.71	55.72
W-36	ECS	59.38	0.00	3.15	7.25	34.49	55.11
	Average	59.41 ^{BC}	0.00	3.68	6.80	34.10 ^{AB}	55.42 ^{CD}
Lohmann	CS	61.55	0.00	3.65	6.26	21.55	68.53
LSL Lite	ECS	61.03	0.09	4.84	3.94	23.25	67.87
	Average	61.29 ^{AB}	0.04	4.24	5.10	22.40 ^{DE}	68.20 ^{AB}
H&N	CS	62.02	0.00	5.07	4.15	17.21	73.57
Nick Chick	ECS	62.03	0.00	4.72	3.79	18.08	73.41
	Average	62.03 ^A	0.00	4.90	3.97	17.65 ^E	73.49 ^A
Novogen	CS	60.53	0.00	5.16	4.16	26.82	63.86
Novowhite	ECS	60.35	0.00	4.30	5.97	25.80	63.92
	Average	60.44 ^{ABC}	0.00	4.73	5.07	26.31 ^{CD}	63.89 ^{AB}
All	CS	59.91	0.18	4.81	4.82	29.41	60.78
	-~						
Strains	ECS	59.85	0.06	4.35	5.34	30.12	60.10

Table 19. Effect of White-egg Strain and Housing System^{1,2} on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System

¹Colony Housing System=CS; Enriched Colony Housing System=ECS

 2 All strains were equally represented in each production system, and C, CS and ECS hens were housed at (69 in²/hen; 445 cm²/hen).

A,B,C,D,E - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values.

Table 20. Effect of White-egg Strain and Housing System^{1,2} on Egg Quality, Income and Feed Costs of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System

	Housing	Grade	Grade			Egg	Feed
Breeder	System ¹	А	В	Cracks	Loss	Income	Costs
(Strain)		(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Bovans	CS	89.94	0.17	9.60	0.19	50.69	19.73
White	ECS	89.54	0.43	9.50	0.45	48.85	19.25
	Average	89.74	0.30	9.55	0.32	49.77	19.49 ^{ABC}
Shaver	CS	92.17	0.33	7.36	0.17	48.45	18.29
White	ECS	91.10	0.42	8.30	0.26	49.24	18.51
	Average	91.63	0.38	7.83	0.21	48.85	18.40 ^{BC}
Dekalb	CS	90.11	0.40	9.20	0.28	48.32	20.41
White	ECS	90.84	0.40	8.16	0.51	51.11	19.42
	Average	90.48	0.40	8.68	0.40	49.72	19.91 ^{AB}
Babcock	CS	90.60	0.26	8.89	0.41	50.38	19.78
White	ECS	89.81	0.32	9.39	0.50	52.38	19.07
	Average	90.21	0.29	6.14	0.45	51.32	19.43 ^{ABC}
ISA	CS	89.57	0.30	9.83	0.30	44.86	18.43
B-400	ECS	91.87	0.54	7.22	0.26	51.38	18.21
	Average	90.72	0.42	8.52	0.28	48.12	18.32 ^{BC}
Hy-Line	CS	90.99	0.54	8.26	0.19	47.37	19.72
W-80	ECS	90.04	0.56	9.09	0.22	48.21	19.05
	Average	90.52	0.55	8.68	0.20	47.79	19.38 ^{ABC}
Hy-Line	CS	92.62	0.37	6.75	0.21	47.97	17.76
W-36	ECS	92.65	0.32	6.68	0.30	49.15	17.84
	Average	92.64	0.35	6.71	0.26	48.56	17.80 ^C
Lohmann	CS	91.21	0.55	8.08	0.32	48.79	21.00
LSL Lite	ECS	91.74	0.59	7.54	0.08	50.83	19.51
	Average	91.48	0.57	7.81	0.20	49.81	20.25 ^A
H&N	CS	90.48	0.85	8.28	0.38	47.93	20.34
Nick Chick	ECS	91.75	0.92	6.79	0.75	51.81	20.27
	Average	91.11	0.89	7.54	0.57	49.87	20.30 ^A
Novogen	CS	91.20	0.95	7.85	0.07	48.32	20.11
Novowhite	ECS	91.35	0.89	7.45	0.33	51.41	19.17
	Average	91.28	0.92	7.65	0.20	49.86	19.64 ^{AB}
All	CS	90.89	0.47	8.41	0.25	48.30 ^Y	19.56
Strains	ECS	91.07	0.54	8.01	0.37	50.44 ^z	19.03
	Average	90.98	0.51	8.21	0.31	49.37	19.29

¹Colony Housing System=CS; Enriched Colony Housing System=ECS

²All strains were equally represented in each production system, and C, CS and ECS hens were housed at (69 in²/hen; 445 cm^{2} /hen)

A,B,C - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values.

Y,Z - Different letters in the same column denote significant differences (P<0.01), comparisons made among each strain-housing combination

	Hansina	End	End	Eggs	Hen Day	Ess		Age at 50%
Breeder	Housing System ¹	Feed Consumption	Feed Conversion	Per Bird Housed	Egg Production ²	Egg Mass	Mortality	50% Production
	System	1					· ·	
(Strain)		(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ³	(%)	(Days)
Bovans	CS	11.40	0.47	396.84	85.26	53.41	18.27	142
Brown	ECS	11.40	0.47	381.99	86.51	54.23	11.87	142
210.00	Average	11.40 ^A	0.47 ^{AB}	389.42	85.89	53.82 ^A	15.07 ^{AB}	142 ^A
ISA	CS	11.15	0.47	388.81	85.27	53.10	27.97	141
Brown	ECS	11.01	0.48	389.13	86.26	53.36	11.80	141
	Average	11.08 ^{AB}	0.48 ^A	388.97	85.77	53.23 ^{AB}	19.88 ^{AB}	141 ^{AB}
Hy-Line	CS	11.02	0.47	371.57	84.24	51.56	23.70	138
Brown	ECS	11.04	0.47	370.57	84.87	51.85	8.63	138
	Average	11.03 ^{AB}	0.47 ^{AB}	371.22	84.55	51.70 ^{AB}	16.17^{AB}	138 ^C
Hy-Line	CS	11.35	0.44	397.96	84.46	49.73	11.87	140
Silver Brown	ECS	11.38	0.43	375.63	84.75	49.31	6.43	139
	Average	11.36 ^A	0.43 ^B	386.79	84.61	49.52 ^в	9.15 ^B	139 ^{BC}
Lohmann	CS	10.77	0.47	337.02	81.87	51.14	65.60	138
LB-Lite	ECS	10.79	0.48	365.02	83.25	52.40	33.33	139
	Average	10.78 ^B	0.48 ^A	351.40	82.56	51.77 ^{AB}	49.47 ^A	138 ^c
Novogen	CS	11.42	0.47	385.02	84.09	53.64	38.70	141
Novobrown	ECS	11.09	0.48	381.49	85.08	53.32	23.63	141
	Average	11.26 ^A	0.47 ^A	383.26	84.59	53.48 ^{AB}	31.17 _{AB}	141 ^{AB}
TETRA	CS	11.15	0.46	384.03	83.36	51.15	18.27	138
Brown	ECS	10.94	0.47	385.31	83.88	51.35	6.47	139
	Average	11.04 ^{AB}	0.46^{AB}	384.67	83.62	51.25 ^{AB}	12.37 ^B	139 ^{BC}
All	CS	11.18	0.46	380.33	84.08	51.96	29.19	140
Strains	ECS	11.09	0.47	378.45	84.94	52.26	14.59	140
	Average	11.14	0.47	379.39	84.51	52.11	21.90	140

Table 21. Effect of Brown-egg Strain and Housing System on Performance of (17-89 wks) Hens in a Col-
ony Housing System and an Enriched Colony Housing System

¹Colony Housing System=CS; Enriched Colony Housing System=ECS All strains were equally represented in each production system, and C, CS and ECS hens were housed at (80 in²/hen; 516 cm²/hen) ²The average daily number of eggs produced per 100 hens (%)

³HD=hen day

A,B,C - Different letters in the same column denote significant differences (P<0.01), comparisons made among strain average values.

	Housing	Egg	Pee				Extra
Breeder	System ¹	Weight	Wee	Small	Medium	Large	Large
(Strain)		(g/egg)	(%)	(%)	(%)	(%)	(%)
Bovans	CS	61.88	0.00	3.02	4.73	21.02	71.23
Brown	ECS	61.91	0.00	2.13	5.50	21.40	70.97
	Average	61.90 ^A	0.00	2.57	5.12	21.21 ^{CD}	71.10 ^A
ISA	CS	61.53	0.00	3.53	5.29	20.71	70.47
Brown	ECS	61.16	0.00	2.40	5.11	23.89	68.60
	Average	61.34 ^A	0.00	2.97	5.20	22.30 ^{BCD}	69.53 ^A
Hy-Line	CS	60.80	0.00	1.52	5.03	29.66	63.80
Brown	ECS	60.68	0.04	0.68	6.45	27.30	65.53
	Average	60.74 ^A	0.02	1.10	5.74	28.48 ^B	64.67 ^A
Hy-Line	CS	58.44	0.00	2.67	6.28	43.07	47.98
Silver Brown	ECS	57.77	0.00	2.29	7.77	46.87	43.07
	Average	58.10 ^B	0.00	2.48	7.03	44.97 ^A	45.52 ^B
Lohmann	CS	61.91	0.00	1.83	5.74	20.37	72.05
LB-Lite	ECS	62.46	0.32	1.19	5.85	19.32	73.32
	Average	62.19 ^A	0.16	1.51	5.80	19.84 ^{CD}	72.69 ^A
Novogen	CS	62.98	0.00	2.89	4.28	16.58	76.24
Novobrown	ECS	61.77	0.00	3.39	4.34	21.10	71.17
	Average	62.38 ^A	0.00	3.14	4.31	18.84 ^D	73.70 ^A
TETRA	CS	60.93	0.00	1.10	6.88	24.97	67.04
Brown	ECS	60.70	0.16	1.70	5.62	27.60	64.93
	Average	60.82 ^A	0.08	1.40	6.25	26.28 ^{BC}	65.99
All	CS	61.21	0.00	2.37	5.46	25.20	66.97
Strains	ECS	60.92	0.07	1.97	5.80	26.78	65.37
	Average	61.07	0.04	2.17	5.63	25.99	66.17

Table 22. Effect of Brown-egg Strain and Housing System on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System

¹Colony Housing System=CS; Enriched Colony Housing System=ECS

All strains were equally represented in each production system, and C, CS and ECS hens were housed at (80 in²/hen; 516 cm²/hen) A,B,C,D - Different letters in the same column denote significant differences (P<0.01), comparisons made among strain average values.

	Housing	Grade	Grade			Egg	Feed
Breeder	System ¹	А	В	Cracks	Loss	Income	Costs
(Strain)		(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Bovans	CS	85.52	0.59	13.17 ^a	0.81	50.08	21.08
Brown	ECS	87.84	1.09	10.67 ^{abc}	0.24	50.98	20.62
	Average	86.68 ^B	0.84	11.92 ^A	0.52	50.53	20.85 ^A
ISA	CS	90.21	0.88	8.47 ^{bc}	0.65	48.88	20.24
Brown	ECS	88.887	0.35	10.31 ^{abc}	0.81	51.05	19.85
	Average	89.54 ^{AB}	0.61	9.30 ^{AB}	0.73	49.97	20.04^{AB}
Hy-Line	CS	88.22	0.46	10.61 ^{abc}	0.66	49.34	19.99
Brown	ECS	86.91	0.84	11.74 ^{ab}	0.48	47.56	19.71
	Average	87.56 ^B	0.65	11.17^{A}	0.57	48.45	19.85 ^{AB}
Hy-Line	CS	90.54	0.46	8.50 ^{abc}	0.49	48.29	20.89
Silver Brown	ECS	92.48	0.57	6.46 ^c	0.61	48.11	20.78
	Average	91.51 ^A	0.52	7.48 ^B	0.55	48.20	20.84 ^A
Lohmann	CS	88.90	1.44	8.48 ^{bc}	1.12	49.17	19.54
LB-Lite	ECS	86.72	0.95	11.18 ^{ab}	1.51	50.36	19.48
	Average	87.81 ^B	1.20	9.83 ^{AB}	1.32	49.76	19.51 ^B
Novogen	CS	88.14	1.14	10.06 ^{abc}	1.21	51.17	21.06
Novobrown	ECS	87.82	1.05	10.08 ^{abc}	0.62	49.68	19.82
	Average	87.98 ^B	1.10	10.07^{AB}	0.91	50.43	20.44^{AB}
TETRA	CS	87.86	0.82	10.42 ^{abc}	1.01	47.68	20.38
Brown	ECS	86.00	0.32	12.81 ^{ab}	0.77	47.99	19.89
	Average	86.93 ^B	0.57	11.61 ^A	0.89	47.83	20.14^{AB}
All	CS	88.48	0.83	9.96	0.85	49.23	20.45
Strains	ECS	88.09	0.74	10.44	0.72	49.39	20.02
	Average	88.29	0.78	10.20	0.79	49.31	20.24

Table 23. Effect of Brown-egg Strain and Housing System on Egg Quality, Income and Feed
Costs of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System

¹Colony Housing System=CS; Enriched Colony Housing System=ECS

All strains were equally represented in each production system, and C, CS and ECS hens were housed at (80 in²/hen; 516 cm²/hen)

A,B - Different letters in the same column denote significant differences (P<0.01), comparisons made among strain average values.

a, b, c - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values.

Breeder	Housing System ¹	17-Wk Body Wt	89-Wk Body Wt	Single Cycle Wt Gain
(Strain)		(kg)	(kg)	(%)
Bovans	CS	1.16	1.74 ^{abcdef}	33.2 ^{abc}
White	ECS	1.15	1.79 ^{abc}	35.4ª
	Average	1.16 ^{ABC}	1.76 ^{ABC}	34.3 ^{AB}
Shaver	CS	1.10	1.73 ^{abcdef}	36.3ª
White	ECS	1.11	1.66 ^{cdef}	33.1 ^{abc}
	Average	1.11 ^C	1.69 ^{BCD}	34.7 ^{AB}
Dekalb	CS	1.17	1.76 ^{abcde}	33.3 ^{abc}
White	ECS	1.14	1.63 ^{ef}	30.1 ^{abc}
	Average	1.16^{ABC}	1.69 ^{BCD}	31.7 ^{AB}
Babcock	CS	1.22	1.82ª	32.7 ^{abc}
White	ECS	1.15	1.77^{abcd}	35.2ª
	Average	1.19 ^{AB}	1.80 ^A	33.9 ^{AB}
ISA	CS	1.13	1.70 ^{abcdef}	34.0 ^{abc}
B-400	ECS	1.00	1.64 ^{def}	33.1 ^{abc}
	Average	1.11 ^C	1.67 ^D	33.6 ^{AB}
Hy-Line	CS	1.16	1.80 ^{ab}	35.4 ^a
W-80	ECS	1.14	1.75 ^{abcde}	34.6 ^{abc}
	Average	1.15^{ABC}	1.77 ^{AB}	35.0 ^A
Hy-Line	CS	1.13	1.67 ^{bcdef}	32.6 ^{abc}
W-36	ECS	1.11	1.68 ^{bcdef}	33.8 ^{abc}
	Average	1.12 ^{BC}	1.68 ^{CD}	33.2 ^{AB}
Lohmann	CS	1.19	1.80 ^{ab}	33.6 ^{ab}
LSL Lite	ECS	1.22	1.73 ^{abcdef}	29.5 ^{abc}
	Average	1.21 ^A	1.76 ^{ABC}	31.6 ^{AB}
H&N	CS	1.17	1.75 ^{abcde}	32.8 ^{abc}
Nick Chick	ECS	1.22	1.67 ^{bcdef}	27.0 ^{bc}
	Average	1.20 ^A	1.71 ^{ABCD}	29.9 ^B
Novogen	CS	1.15	1.73 ^{abcdef}	33.3 ^{abc}
Novowhite	ECS	1.16	1.61 ^f	27.7°
	Average	1.16 ^{ABC}	1.67 ^D	30.5 ^B
All	CS	1.16	1.75 ^Y	33.7 ^Y
Strains	ECS	1.15	1.69 ^Z	32.0 ^Z
	Average	1.16	1.72	32.8

Table 24. Effect of White-egg Strains on Body Weight of Hens (17-89 wks) in a Colony Housing System and an Enriched Colony Housing System

40th NCLP&MT

¹Colony Housing System=CS; Enriched Colony Housing System=ECS (69 in²/hen; 445 cm²/hen) A, B, C - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values.

a, b, c, d, e, f - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values

Y, Z - Different letters in the same column denote significant differences (P<0.01), comparisons made among each strain-housing combination

		17-Wk	89-Wk	Single Cycle
Breeder	System ¹	Body Wt	Body Wt	Wt Gain
(Strain)		(kg)	(kg)	(%)
Bovans	CS	1.40	2.02	30.6
Brown	ECS	1.42	2.04	30.1
	Average	1.41 ^{BC}	2.03 ^{BC}	30.3 ^{AB}
ISA	CS	1.35	1.91	29.9
Brown	ECS	1.40	1.97	28.6
	Average	1.38 ^C	1.94 ^C	29.3 ^{AB}
Hy-Line	CS	1.40	2.01	30.6
Brown	ECS	1.47	2.07	29.2
	Average	1.43 ^{ABC}	2.04 ^{BC}	29.9 ^{AB}
Hy-Line	CS	1.53	2.20	30.1
Silver Brown	ECS	1.48	2.16	31.4
	Average	1.51 ^A	2.18 ^A	30.7 ^A
Lohmann	CS	1.49	1.96	23.8
LB-Lite	ECS	1.43	1.93	25.8
	Average	1.46^{ABC}	1.95 ^C	24.9 ^B
Novogen	CS	1.50	2.00	25.8
Novobrown	ECS	1.45	1.98	26.8
	Average	1.47 ^{AB}	1.99 ^{BC}	26.0 ^{AB}
TETRA	CS	1.42	2.07	31.1
Brown	ECS	1.44	2.11	
	Average	1.43 ^{ABC}	2.09 ^{AB}	31.6 ^A
All	CS	1.44	2.02	28.8
Strains	ECS	1.44	2.04	29.1
	Average	1.44	2.03	29.0

Table 25. Effect of Brown-egg Strains on Body Weight of Hens (17-89 wks)in a Colony Housing System and an Enriched Colony Housing System

40th NCLP&MT

¹Colony Housing System=CS; Enriched Colony Housing System=ECS (80 in²/hen; 516 cm²/hen) A, B, C - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains using average of CS and ECS values

Breeder	Density ¹	Feed Consumption	Feed Conversion	Eggs per Bird Housed	Hen-Day Egg Production ²	Egg Mass	Mortal- ity	Age at 50% Production
(Strain)	(in ² /hen)	(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ³	(%)	(Days)
Dekalb White	177	10.52°	0.52	450.86	91.33ª	54.49 ^{ab}	3.33	132
Babcock White	177	10.23 ^{abc}	0.53	447.55	89.89 ^a	53.38 ^{abc}	3.33	133
Hy-Line W-80	177	9.92 ^{bcd}	0.49	409.52	81.72 ^{ab}	48.14 ^{bcd}	2.50	139
Hy-Line W-36	177	9.74 ^{cd}	0.46	372.95	75.21 ^b	45.28°	2.50	141
Hy-Line White Exp.	177	9.61 ^d	0.48	376.56	76.08 ^b	45.59 ^{cd}	3.33	140
Lohmann LSL Lite	177	10.34 ^{ab}	0.51	416.01	84.08 ^{ab}	52.51 ^{abcd}	4.16	139
H&N Nick Chick	177	10.48 ^a	0.54	438.74	88.83 ^{ab}	56.32ª	3.34	141
Novogen Novowhite	177	10.37 ^{ab}	0.51	428.19	85.12 ^{ab}	52.45 ^{abcd}	0.84	138
All Strains	177	10.15	0.50	417.54	84.02	51.04	2.92	138

Table 26. Effect of White-egg Strain on Performance of Hens (17-89 wks) in a Cage-free System

¹(177 in²/hen; 1142 cm²/hen)

²The average daily number of eggs produced per 100 hens (%)

 3 HD = hen day

a,b,c,d - Different letters in the same column denote significant differences (P<0.01) for comparisons made among strains.

		Egg	Pee				Extra
Breeder	Density ¹	Weight	Wee	Small	Medium	Large	Large
(Strain)	(in ² /hen)	(g/egg)	(%)	(%)	(%)	(%)	(%)
Dekalb White	177	59.25 ^{ab}	0.00	2.59	4.65	35.49 ^{abc}	57.26 ^{ab}
Babcock White	177	59.34 ^{ab}	0.00	2.41	5.13	38.23 ^{ab}	54.09 ^{ab}
Hy-Line W-80	177	58.69 ^b	0.00	2.59	6.01	41.65 ^a	49.73 ^b
Hy-Line W-36	177	59.92 ^{ab}	0.00	2.10	5.00	34.81 ^{abc}	57.44 ^{ab}
Hy-Line White Exp.	177	59.61 ^{ab}	0.00	3.16	4.34	37.73 ^{ab}	54.45 ^{ab}
Lohmann LSL Lite	177	61.95 ^{ab}	0.00	1.95	4.17	22.74 ^{bc}	70.73 ^{ab}
H&N Nick Chick	177	63.02 ^a	0.00	2.04	3.15	18.93°	75.87ª
Novogen Novowhite	177	61.00 ^{ab}	0.00	2.69	3.34	29.67 ^{abc}	64.29 ^{ab}
All Strains 40th NCLP&M	177	60.34	0.00	2.44	4.47	32.41	60.28

Table 27. Effect of White-egg Strain on Egg Weight and Size Distribution of Eggs Produced by Hens (17-89 wks) in a Cage-free System.

(177 in²/hen; 1142 cm²/hen)

a,b,c,d,- Different letters denote significant differences (P<0.01), comparisons made among strains

Breeder	Density ¹	Grade A	Grade B	Cracks	Loss	Egg Income	Feed Costs
(Strain)	(in ² /hen)	(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Dekalb White	177	96.86	0.18	2.59	0.37	50.83	18.88
Babcock White	177	95.52	0.49	3.89	0.09	49.06	18.36
Hy-Line W-80	177	94.44	0.74	4.81	0.00	44.48	17.83
Hy-Line W-36	177	94.87	0.56	4.29	0.28	42.97	17.54
Hy-Line White Exp.	177	96.65	0.38	2.88	0.09	42.88	17.27
Lohmann LSL Lite	177	95.93	0.46	3.41	0.19	49.17	18.60
H&N Nick Chick	177	94.63	0.92	4.35	0.09	52.64	18.82
Novogen Novowhite	177	95.88	0.66	3.26	0.18	49.60	18.67
All Strains	177	95.60	0.55	3.69	0.16	47.74	18.25
40 th NCLP&MT							

Table 28. Effect of White-Egg Strain on Egg Quality, Income and Feed Costs of Hens (17-89 wks)in Cage Free

¹(177 in²/hen; 1142 cm²/hen)

		Feed	Feed	Eggs Per Bird	Hen-Day Egg	Egg		Age at 50%
Breeder	Density ¹	Consumption	Conversion	Housed	Production ²	Mass	Mortality	Production
(Strain)	(in ² /hen)	(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ³	(%)	(Days)
Bovans	177	10.83 ^{ab}	0.47^{ab}	388.68	82.70	51.54	14.16	140
Brown								
ISA	177	10.97^{a}	0.46^{ab}	362.28	81.09	50.18	30.83	137
Brown								
Hy-Line	177	10.43 ^{bc}	0.47 ^{ab}	334.66	78.73	47.78	5.00	140
Brown								
Hy-Line	177	11.19 ^a	0.44 ^{ab}	392.15	82.55	49.02	18.34	137
Silver Brown								
Lohmann	177	10.15 ^c	0.50 ^a	320.39	79.09	49.52	26.66	139
LB-Lite								
Novogen	177	10.88 ^{ab}	0.47 ^{ab}	367.45	81.63	50.64	26.66	139
Novobrown								
TETRA	177	10.70 ^{ab}	0.42 ^b	344.38	72.52	44.79	13.33	138
Brown								
All								
Strains	177	10.66	0.46	351.67	79.62	49.00	19.28	139
40th NCLP&M'	Г							

Table 29. Effect of Brown-egg Strain on Performance of Hens (17–89 wks) in a Cage-free System

40th NCLP&MT

¹(177 in²/hen; 1142 cm²/hen)

²The average daily number of eggs produced per 100 hens (%)

 3 HD = hen day

a,b, c - Different letters in the same column denote significant differences (P<0.01), comparisons made among strain average values.

		Egg	Pee				Extra
Breeder	Density ¹	Weight	Wee	Small	Medium	Large	Large
(Strain)	(in ² /hen)	(g/egg)	(%)	(%)	(%)	(%)	(%)
Bovans Brown	177	61.80 ^{ab}	0.00	1.09	4.88	24.05 ^b	69.96 ^a
ISA	177	61.46 ^{ab}	0.00	2.04	4.64	26.00 ^b	67.31 ^{ab}
Brown							
Hy-Line	177	60.23 ^{ab}	0.00	1.29	5.43	31.92 ^{ab}	61.34 ^{ab}
Brown							
Hy-Line	177	59.00 ^b	0.00	1.95	4.90	43.08 ^a	50.06 ^b
Silver Brown							
Lohmann	177	62.07 ^a	0.00	1.99	4.97	21.16 ^b	71.88ª
LB-Lite							
Novogen	177	61.47 ^{ab}	0.00	2.06	3.50	26.79 ^b	67.65 ^{ab}
Novobrown							
TETRA	177	61.41 ^{ab}	0.00	1.10	4.57	27.69 ^b	66.63 ^{ab}
Brown							
All							
Strains	177	61.07	0.00	1.60	4.78	28.30	65.25
40th NCI P&MT	י						

Table 30. Effect of Brown-egg Strain on Egg Weight and Size Distribution of Eggs Produced byHens (17–89 wks) in a Cage-free System

40th NCLP&MT

¹(177 in²/hen; 1142 cm²/hen)

a,b - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains.

		Grade	Grade			Egg	Feed
Breeder	Density ¹	А	В	Cracks	Loss	Income	Costs
(Strain)	(in ² /hen)	(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Bovans Brown	177	97.40	0.55	1.85	0.20	47.07	19.47
ISA	177	96.87	1.30	1.64	1.19	47.07	19.72
Brown							
Hy-Line	177	96.08	1.36	2.46	0.10	45.52	18.74
Brown							
Hy-Line	177	97.87	0.92	1.20	0.00	45.17	20.13
Silver Brown							
Lohmann	177	97.24	0.81	1.78	0.17	48.38	18.37
LB-Lite							
Novogen	177	97.73	0.46	1.39	0.42	46.45	19.53
Novobrown							
TETRA	177	96.69	0.26	2.54	0.32	40.75	19.25
Brown							
All							
Strains	177	97.04	0.86	1.89	0.19	45.77	19.32

Table 31. Effect of Brown-egg Strain on Egg Quality, Income and Feed Costs of Hens (17–89 wks) in a Cage-free System.

 $^{1}(177 \text{ in}^{2}/\text{hen}; 1142 \text{ cm}^{2}/\text{hen})$

```	8			
		17-Wk	89-Wk	Single Cycle
Breeder	Density ¹	Body Wt	Body Wt	Wt Gain
(Strain)	(in ² /hen)	(kg)	(kg)	(%)
Dekalb White	177	1.10	1.79	35.3
Babcock White	177	1.16	1.90	37.1
Hy-Line W-80	177	1.13	1.82	34.3
Hy-Line W-36	177	1.18	1.82	36.3
Hy-Line White Exp.	177	1.13	1.78	36.6
Lohmann LSL Lite	177	1.16	1.81	31.9
H&N Nick Chick	177	1.12	1.83	33.6
Novogen Novowhite	177	1.16	1.80	33.3
All	1.7.7	1.15	1.00	24.0
Strains 40th NCL P&MT	177	1.15	1.82	34.8

Table 32. Effect of White-egg Strain on Body Weight of Hens(17-89 wks) in a Cage-free System

40th NCLP&MT

¹(177 in²/hen; 1142 cm²/hen)

		17-Wk	89-Wk	Single Cycle
Breeder	Density ¹	Body Wt	Body Wt	Wt Gain
(Strain)	(in ² /hen)	(kg)	(kg)	(%)
Bovans Brown	177	1.40	2.01 ^{ab}	33.8
ISA Brown	177	1.30	1.88 ^b	28.9
Hy-Line Brown	177	1.40	2.07 ^{ab}	33.4
Hy-Line Silver Brown	177	1.46	2.29ª	36.4
Lohmann LB-Lite	177	1.40	1.96 ^{ab}	30.5
Novogen Novobrown	177	1.39	2.12 ^{ab}	35.4
TETRA Brown	177	1.40	2.18 ^{ab}	36.0
All Strains	177	1.39	2.07	33.5

Table 33. Effect of Brown-egg Strain on Body Weight of Hens (17-89 wks) in a Cage-free System.

**40th NCLP&MT** ¹(177 in²/hen; 1142 cm²/hen)

a,b - Different letters denote significant differences (P<0.01), comparisons made among strains

		Feed	Feed	Eggs Per Bird	Hen-Day Egg	Egg		Age at 50%
Breeder	Density ³	Consumption	Conversion	Housed	Production ⁴	Mass	Mortality	Production
(Strain)	(in ² /hen)	(kg/100 hens/d)	(g egg/g feed)	(#)	(%)	(g/HD) ⁵	(%)	(Days)
Hy-Line White Exp. ¹	177	10.68	0.45	354	77.46	48.75	11.67	151
Hy-Line Brown ²	177	11.27 ^a	0.46	377	80.38	51.94	3.28	152
Hy-Line Silver Brown ²	177	11.51 ^a	0.44	390	82.47	51.21	5.83	148
Lohmann LB-Lite ²	177	10.68 ^b	0.51	394	82.94	54.58	7.50	148
All Brown-Egg								
Strains ²	177	11.09	0.47	387	81.84	52.79	5.53	150

Table 34. Effect of Egg Strain on Performance of Hens (17–89 wks) in a Free-range System.

40th NCLP&MT

¹White-EggStrain

²Brown-Egg Strain

³(177 in²/hen; 1142 cm²/hen) ⁴The average daily number of eggs produced per 100 hens

 5 HD = hen day

a.b - Different letters in the same column denote significant differences (P<0.01), comparisons made among strain average values.

		Egg	Pee				Extra
Breeder	Density ³	Weight	Wee	Small	Medium	Large	Large
(Strain)	(in ² /hen)	(g/egg)	(%)	(%)	(%)	(%)	(%)
Hy-Line White Exp. ¹	177	61.99	0.00	2.6	3.51	24.36	69.46
Hy-Line Brown ²	177	63.55	0.00	1.40	4.67	15.18 ^b	78.74
Hy-Line Silver Brown ²	177	61.45	0.00	0.76	4.72	27.04 ^a	67.47
Lohmann LB-Lite ²	177	64.52	0.00	2.58	4.38	12.55 ^b	80.49
All Brown-Egg							
Strains ²	177	63.45	0.00	1.71	4.57	16.85	76.86

Table 35. Effect of Egg Strain on Egg Weight and Egg Size Distribution of Hens (17–89 wks) in a Free-range System.

40th NCLP&MT

¹White-EggStrain

²Brown-Egg Strain

³(177 in²/hen; 1142 cm²/hen)

a,b - Different letters in the same column denote significant differences (P<0.01), comparisons made among strains.

		( trada	Grade			Eag	Feed
<b>D</b> 1	<b>D</b> 2	Grade		<b>a</b> 1		Egg	
Breeder	Density ³	А	В	Cracks	Loss	Income	Costs
(Strain)	(in ² /hen)	(%)	(%)	(%)	(%)	(\$/hen)	(\$/hen)
Hy-Line	177	95.16	0.83	3.64	0.37	46.40	19.21
White Exp. ¹							
Hy-Line	177	97.75	0.43	1.55	0.27	47.67	20.63
Brown ²							
Hy-Line	177	97.89	0.65	1.37	0.09	49.55	20.80
Silver Brown ²							
Lohmann	177	97.70	0.54	1.43	0.32	50.17	19.52
LB-Lite ²							
All Brown-Egg							
Strains ²	177	97.28	0.57	1.86	0.27	49.13	20.32
40th NCLP&MT							

Table 36. Effect of Egg Strain on Egg Quality, Income and Feed Costs of Hens (17-89 wks) in a **Free-range System** 

¹White-EggStrain ²Brown-Egg Strain

 $^{3}(177 \text{ in}^{2}/\text{hen}; 1142 \text{ cm}^{2}/\text{hen})$ 

		17-Wk	89-Wk	Single Cycle
Breeder	Density ³	Body Wt	Body Wt	Wt Gain
(Strain)	(in ² /hen)	(kg)	(kg)	(%)
Hy-Line White Exp. ¹	177	1.10	1.78	37.9
Hy-Line Brown ²	177	1.40	2.22	36.7
Hy-Line Silver Brown ²	177	1.46	2.27	35.7
Lohmann LB-Lite ²	177	1.40	2.03	31.1
All Brown-Egg				
Strains ²	177	1.39	2.17	34.7

## Table 37 Effect of Egg Strain on Body Weight of Hens (17.89 wks)

¹White-EggStrain ²Brown-Egg Strain

³(177 in²/hen; 1142 cm²/hen)

					Internal					
House	Prolapse	Neoplasia	Septicemic	Salpingites	layer	Dehydatation	Trauma	Undetermined	Osteoporosis	Total
House 5 (Colony Cages)	83	17	53	9	14	14	57	82	1	330
House 7 (Conventional Cages)	42	7	8	1	2	2	12	17	3	94
House 4 (Cage-Free)	9	3	17	0	5	0	3	8	0	45
Free-Range	1	1	2	1	0	0	1	6	0	12

Table 38. Cause of mortality by house/environment as determined by postmortem examination

Production Figures for Laying Hens in Conventional Cages: White-egg Strains 69 in² (445 cm²) Brown-egg Strains 80 in² (516 cm²)

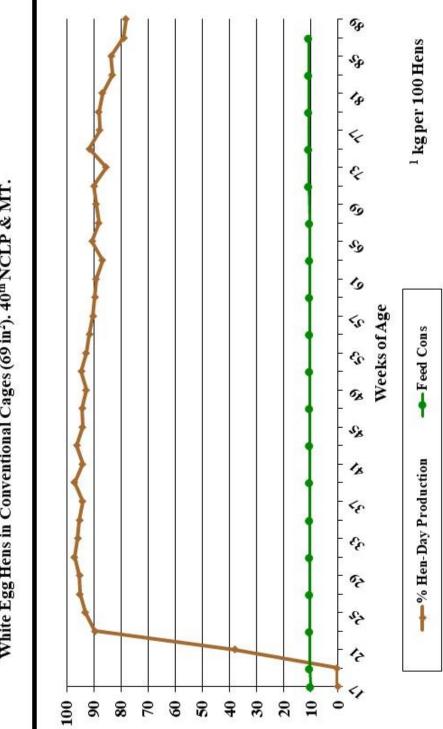
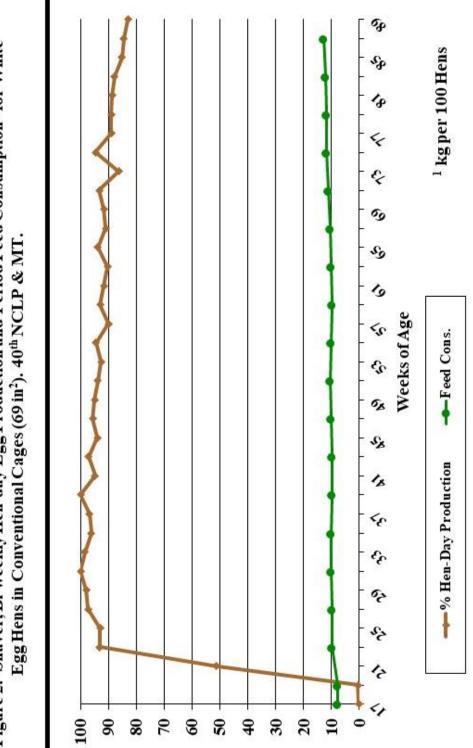
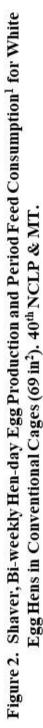





Figure 1. Bovans White, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.





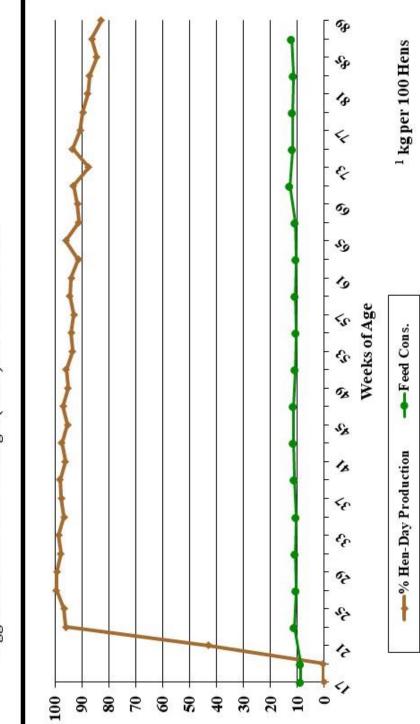



Figure 3. Dekalb, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

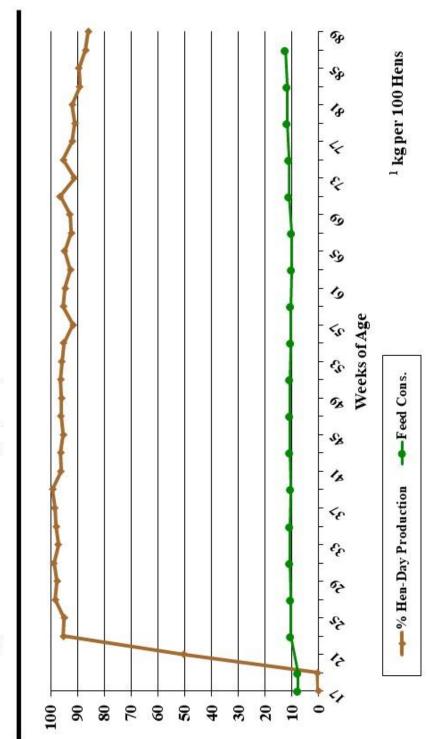



Figure 4. Babcock, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

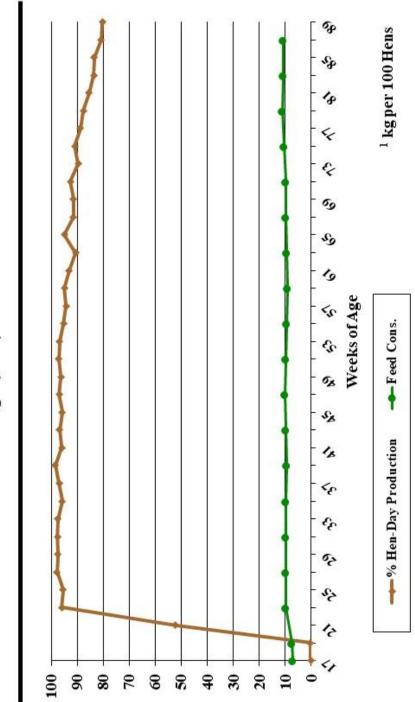



Figure 5. B-400, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Strains Hens in Conventional Cages (69 in²). 40th NCLP & MT.

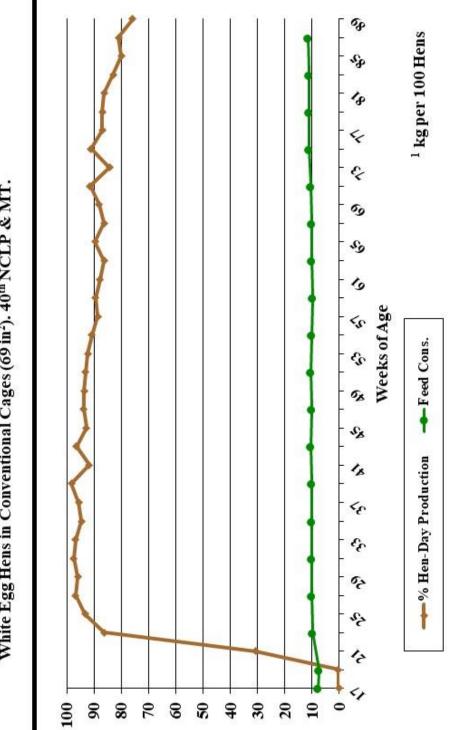



Figure 6. Hy-Line W-80, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

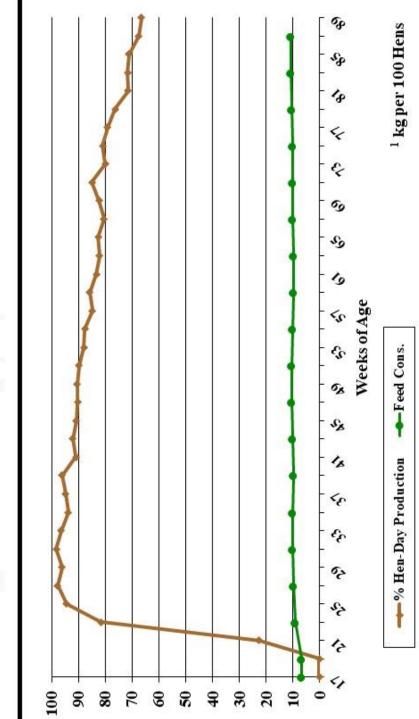



Figure 7. Hy-Line W-36, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

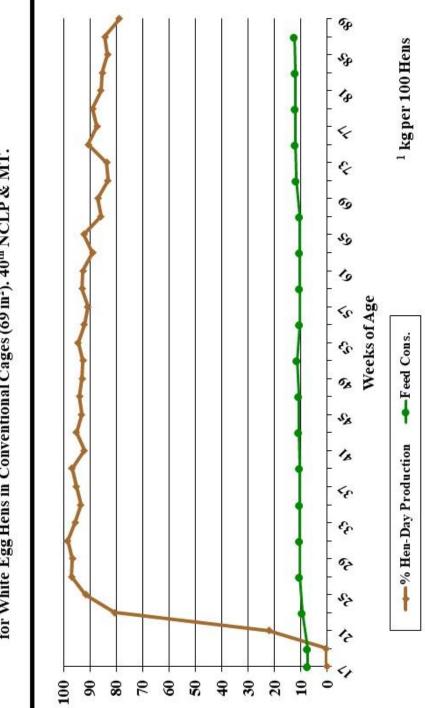



Figure 8. Lohmann, LSL-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

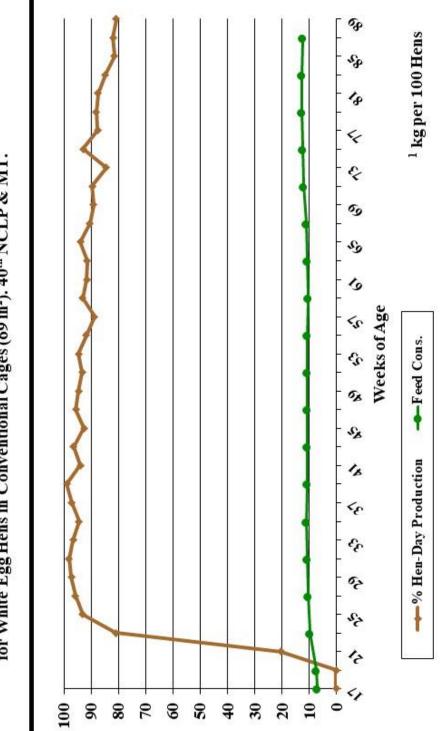



Figure 9. H&N "Nick Chick", Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

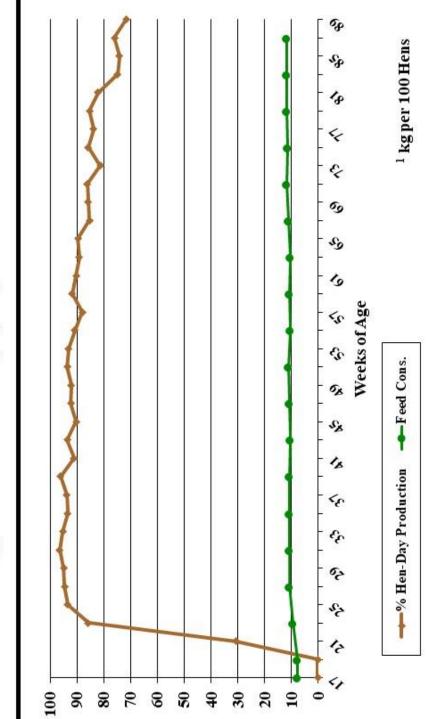



Figure 10. Novogen Novowhite, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in Conventional Cages (69 in²). 40th NCLP & MT.

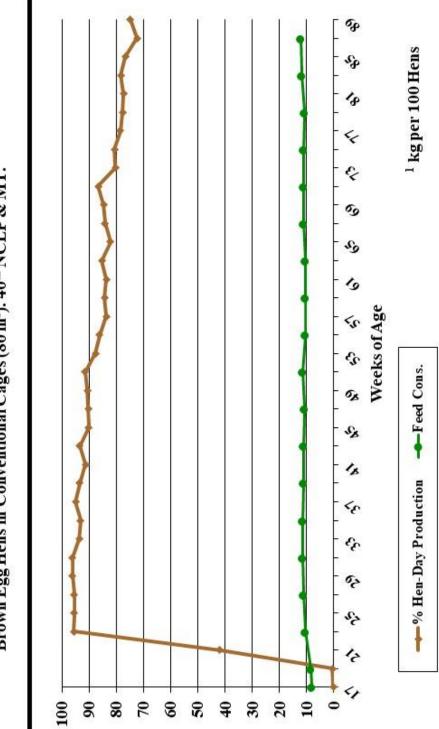



Figure 11. Bovans Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT.

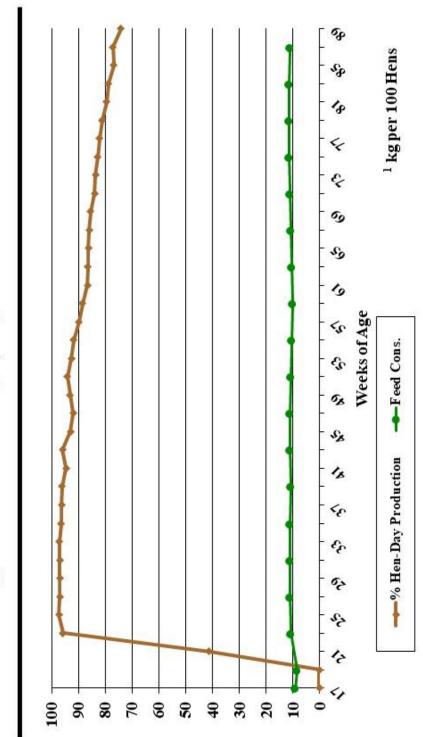
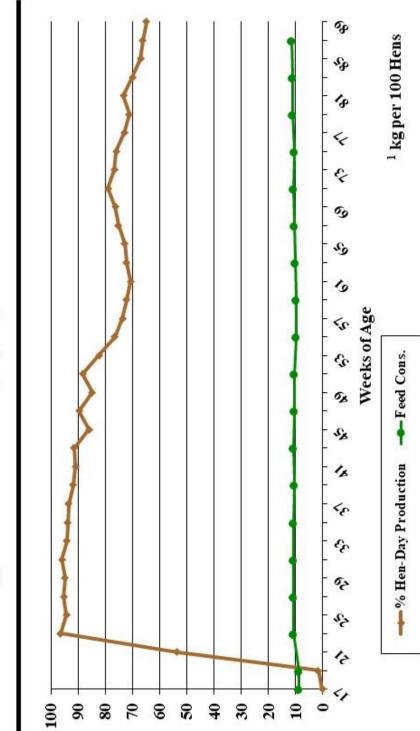
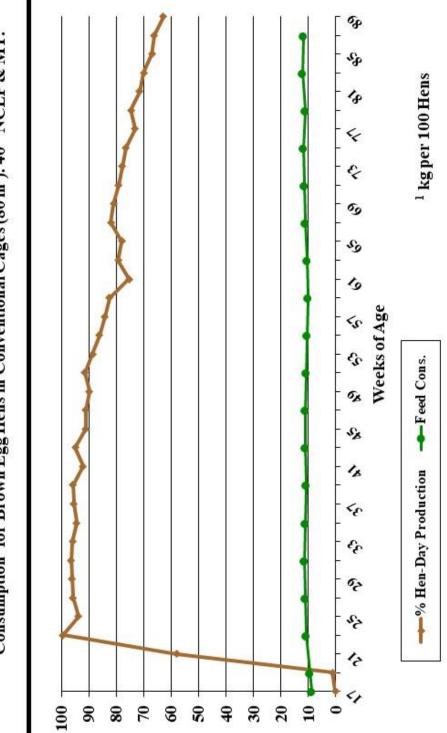
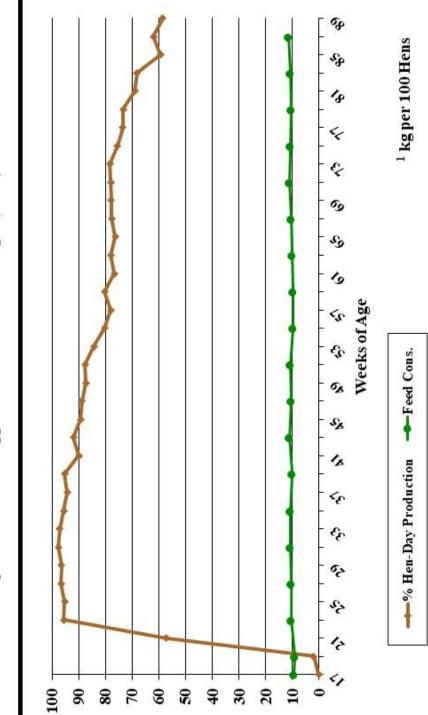
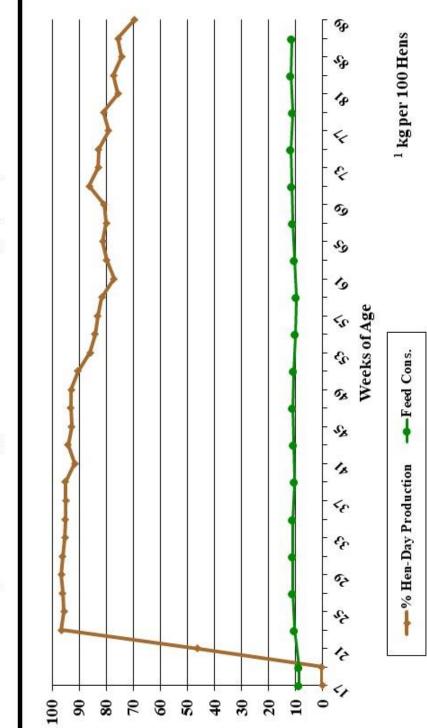
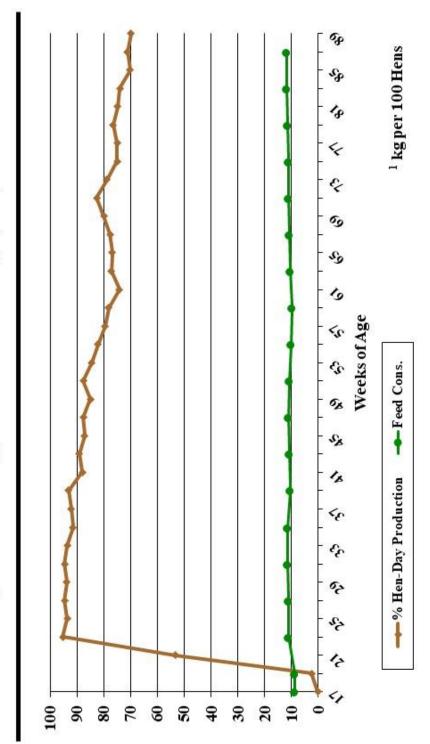



Figure 12. ISA Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT.



Figure 13. Hy-Line Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT.




Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT. Figure 14. Hy-Line Silver Brown, Bi-weekly Hen-day Egg Production and Period Feed



Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT. Figure 15. Lohmann "LB-Lite", Bi-weekly Hen-day Egg Production and Period Feed

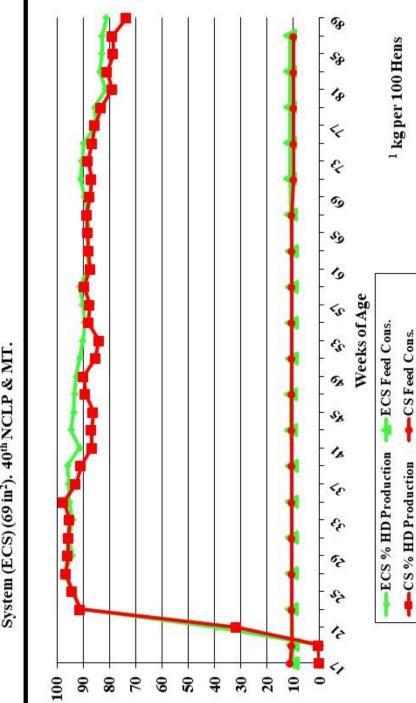
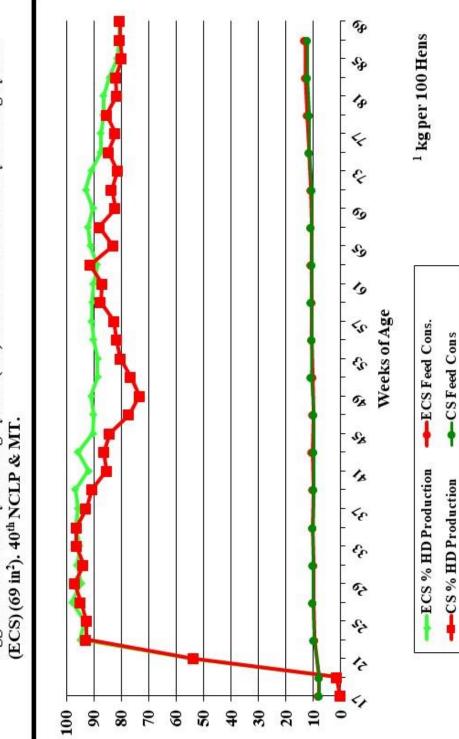
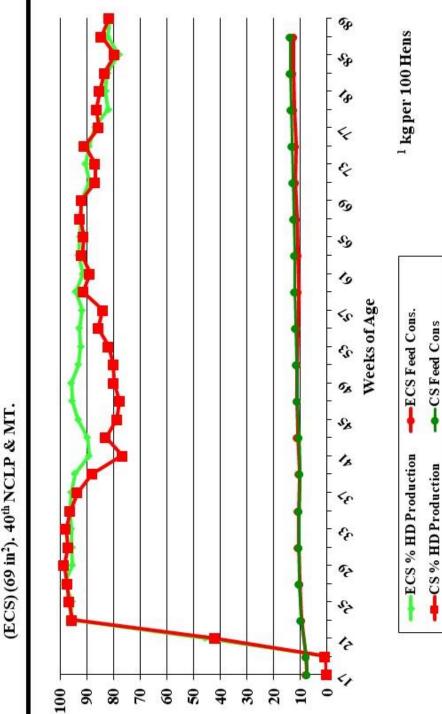
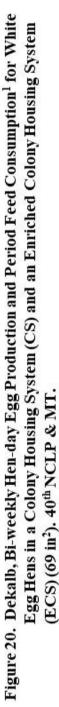


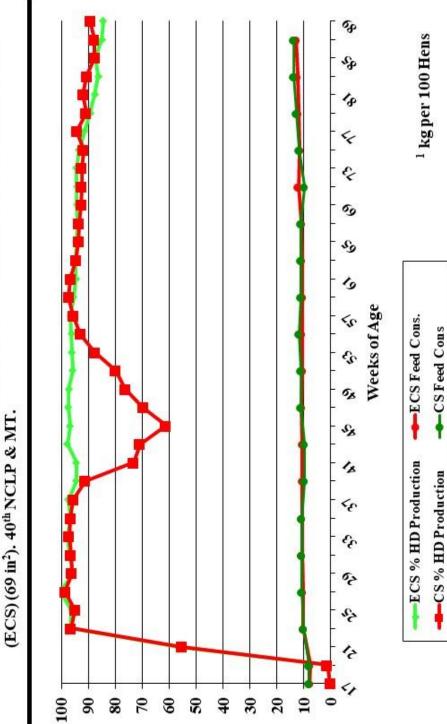
Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT. Figure 16. Novogen Novobrown, Bi-weekly Hen-day Egg Production and Period Feed



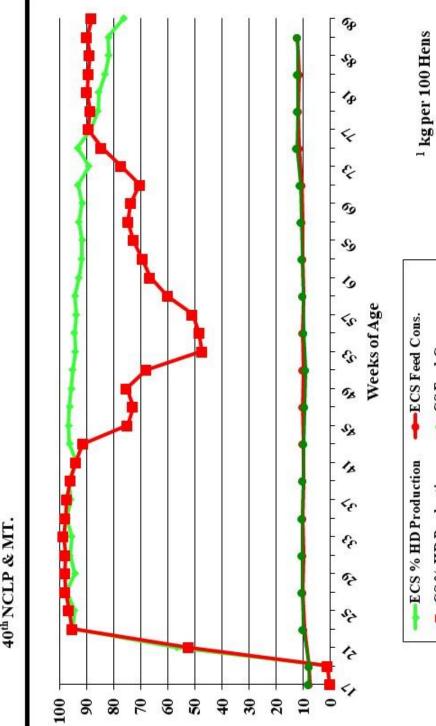
Consumption¹ for Brown Egg Hens in Conventional Cages (80 in²). 40th NCLP & MT. Figure 17. TETRA Americana Brown, Bi-weekly Hen-day Egg Production and Period Feed

Production Figures for Laying Hens in a Colony Housing System and an Enriched Colony Housing System: White-egg Strains 69 in² per hen (445 cm²) Brown-egg Strains 80 in² per hen (516 cm²)

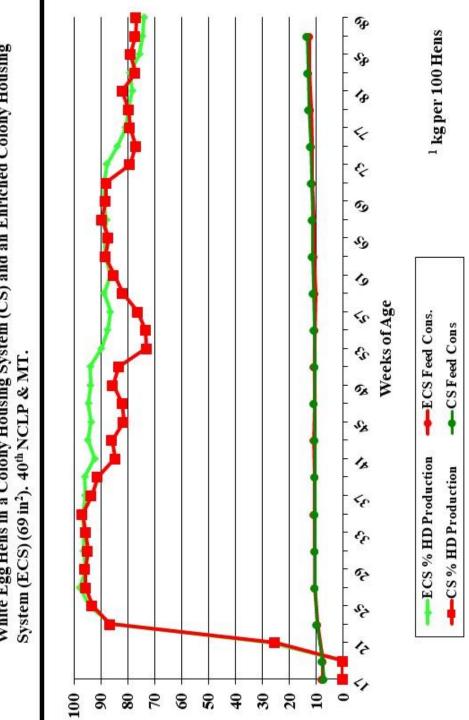


Figure 18. Bovans White, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in²). 40th NCLP & MT.



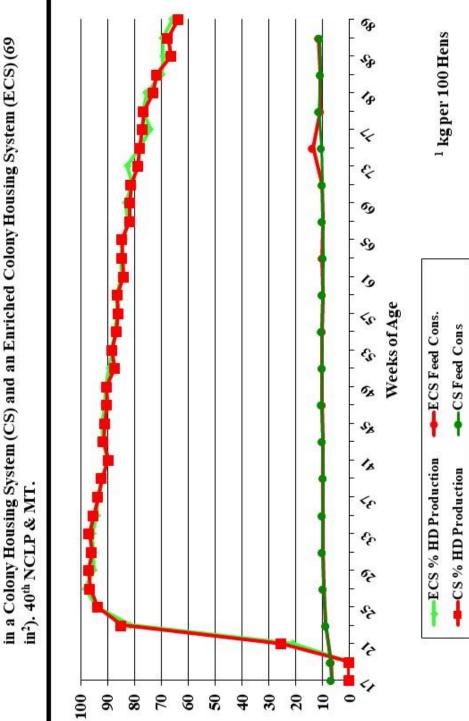


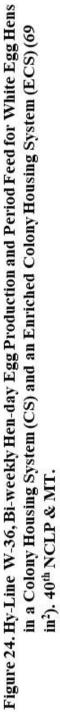


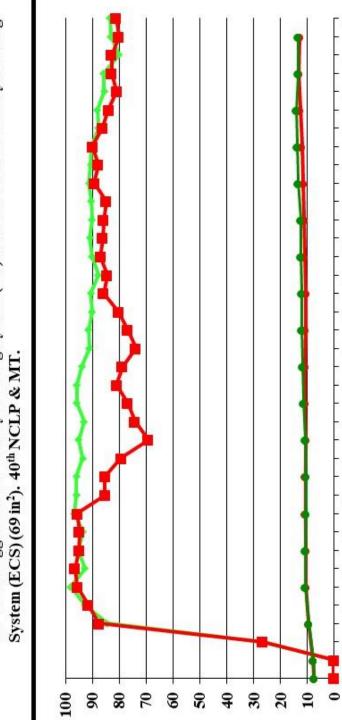






-CS Feed Cons


Colony Housing System (CS) and an Enriched Colony Housing System (ECS) (69 in²). Figure 22. B-400, Bi-weekly Hen-day Egg Production and Period Feed for White Egg Hens in a 40th NCLP & MT.















S

\$

10

5

ç

50

S

10

5

ç

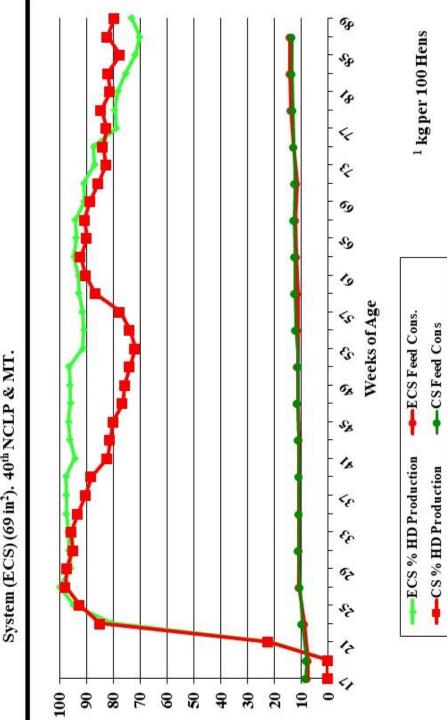
Ox

S

1

3

e


5

S

12

<1

Weeks of Age





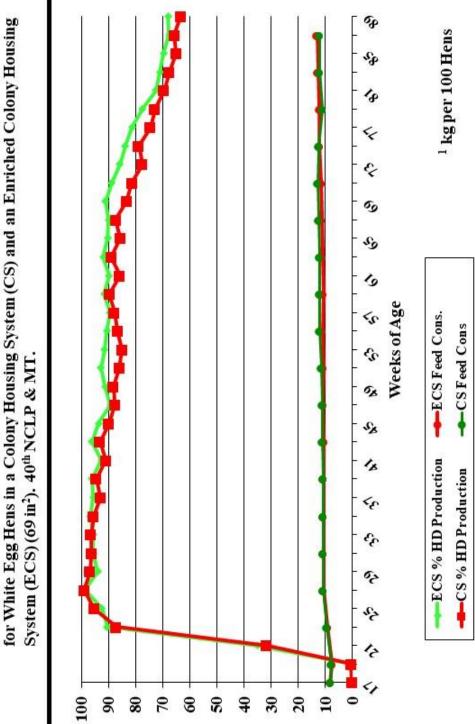
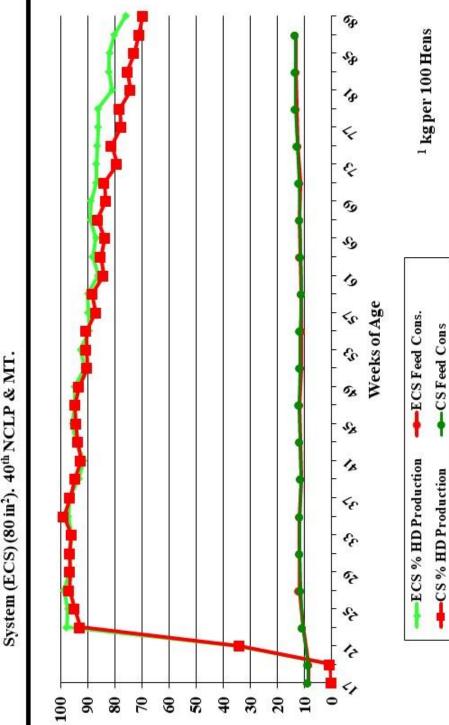
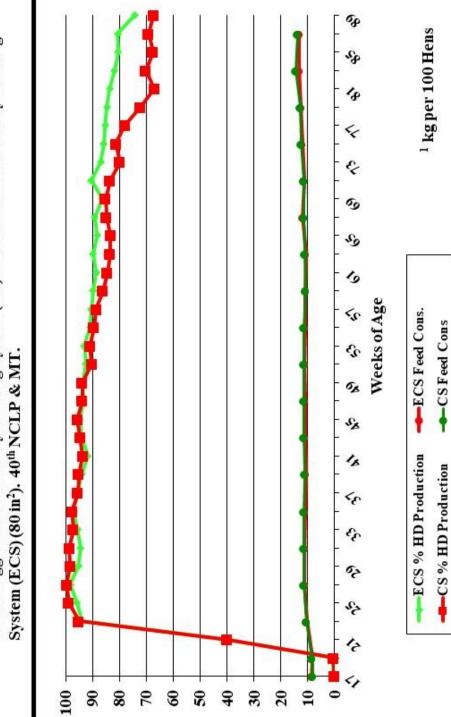





Figure 27. Novogen Novowhite, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹







Brown Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing Figure 29. ISA Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for

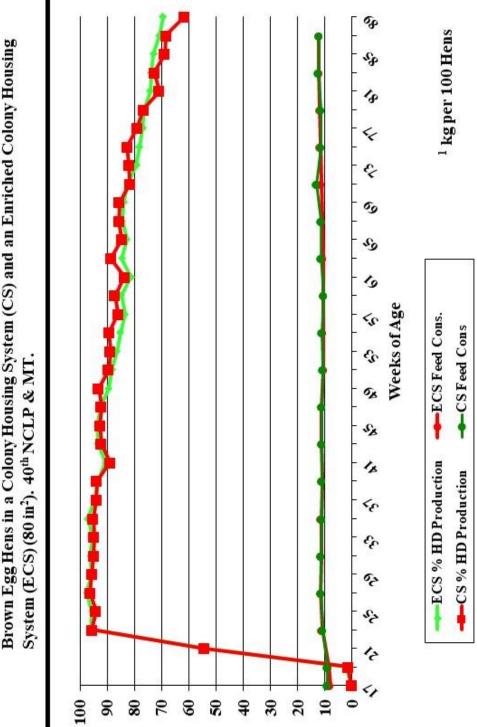
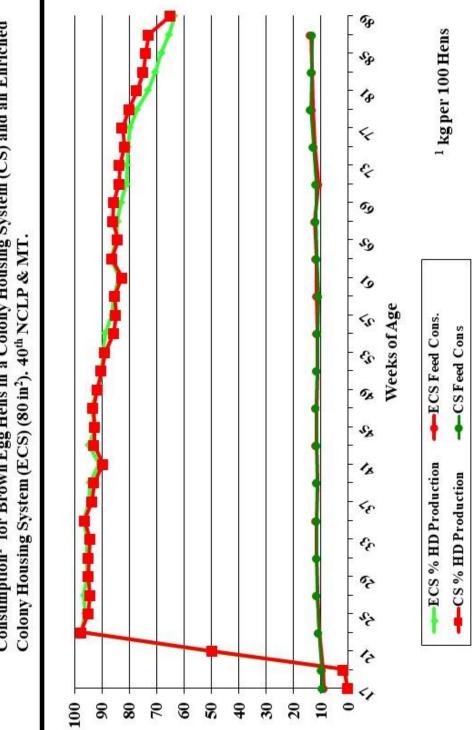




Figure 30. Hy-Line Brown, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for Brown Egg Hens in a Colony Housing System (CS) and an Enriched Colony Housing



Consumption¹ for Brown Egg Hens in a Colony Housing System (CS) and an Enriched Figure 31. Hy-Line Silver Brown, Bi-weekly Hen-day Egg Production and Period Feed

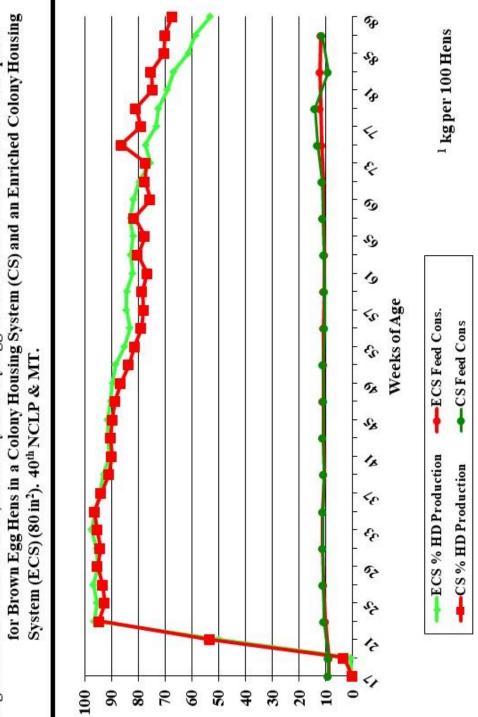
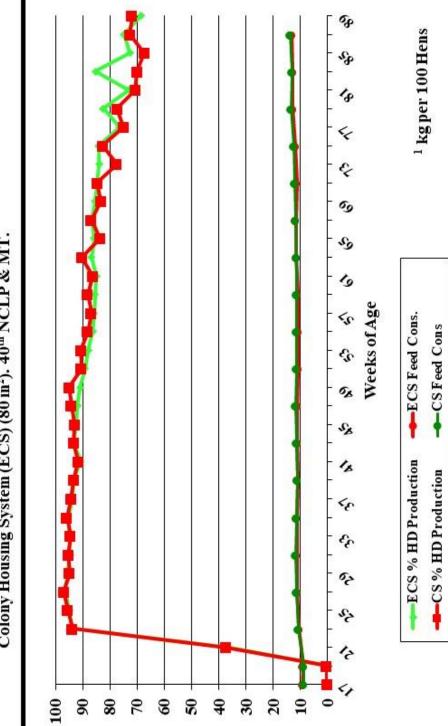
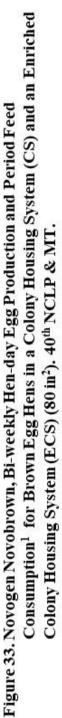
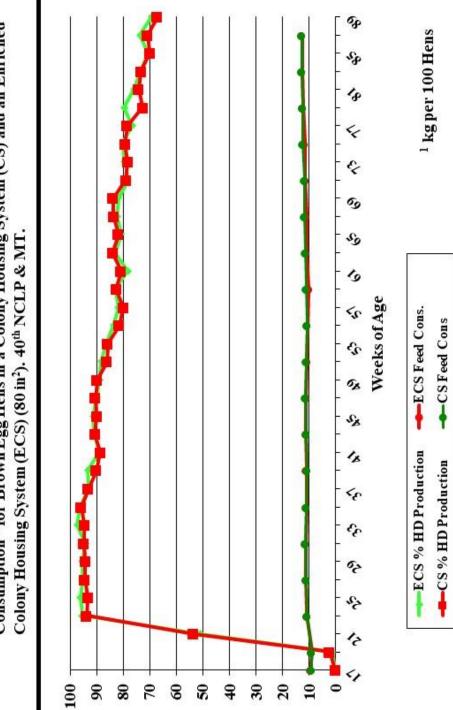






Figure 32. Lohmann LB-Lite, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹







Consumption¹ for Brown Egg Hens in a Colony Housing System (CS) and an Enriched Figure 34. TETRA Americana Brown, Bi-weekly Hen-day Egg Production and Period Feed

## Production Figures for Laying Hens in a Cage-free system which was ½ slat and ½ litter: White- and Brown-egg Strains 177 in² per hen (1141 cm² per hen)

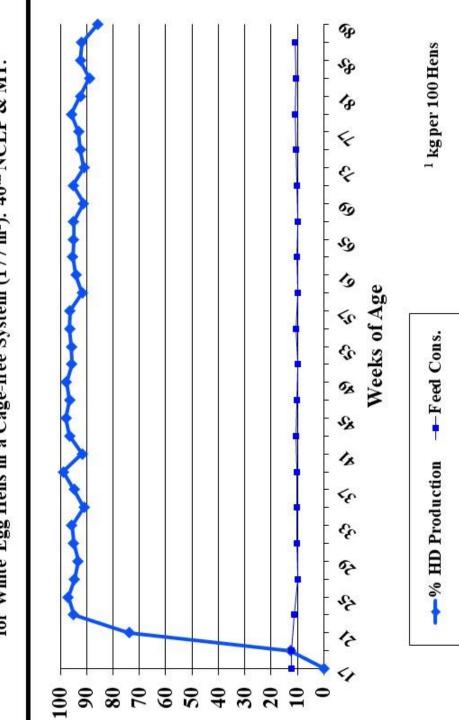
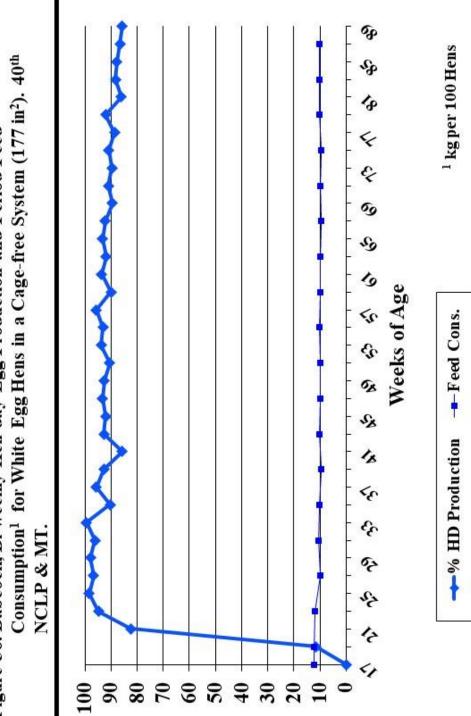
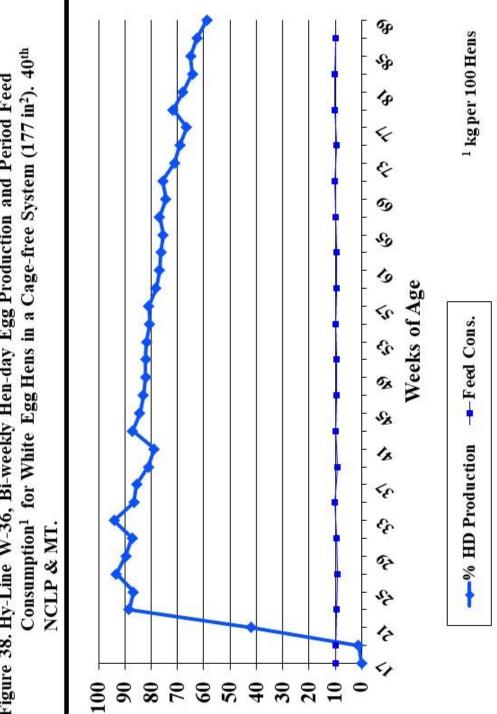



Figure 35. Dekalb, Bi-weekly Hen-day Egg Production and Period Feed Consumption¹ for White Egg Hens in a Cage-free System (177 in²). 40th NCLP & MT.

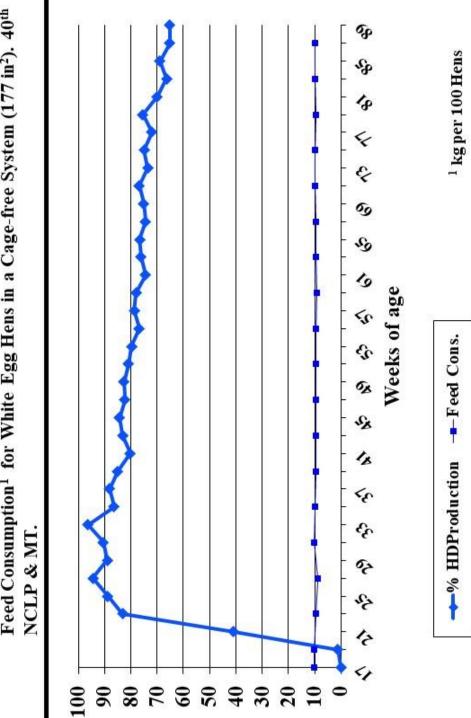






Figure 37. Hy-Line W-80, Bi-weekly Hen-day Egg Production and Period Feed












Figure 40. Lohmann LSL-Lite, Bi-weekly Hen-day Egg Production and Period Feed

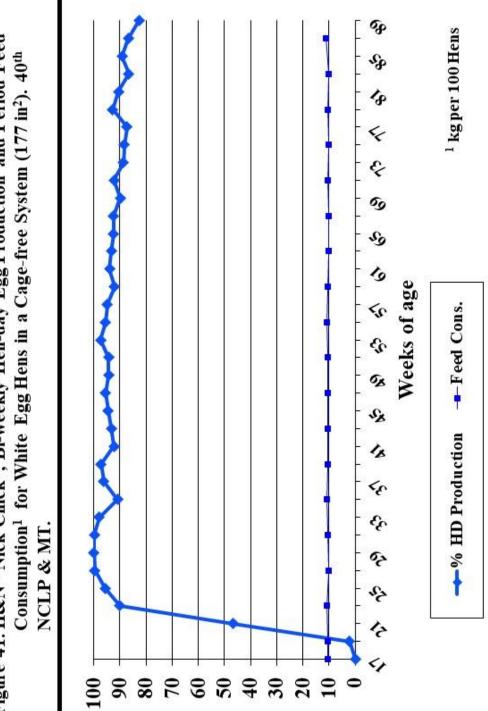
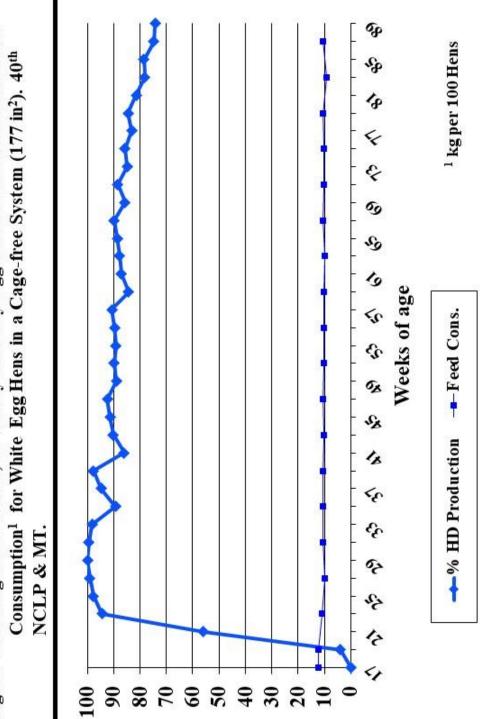




Figure 41. H&N "Nick Chick", Bi-weekly Hen-day Egg Production and Period Feed





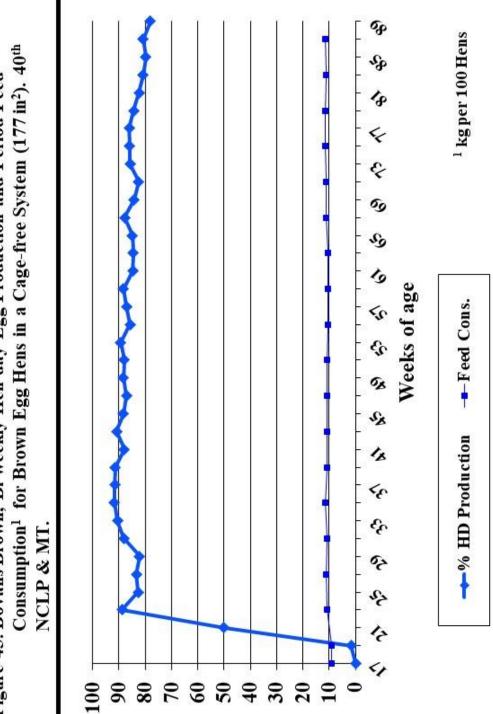



Figure 43. Bovans Brown, Bi-weekly Hen-day Egg Production and Period Feed

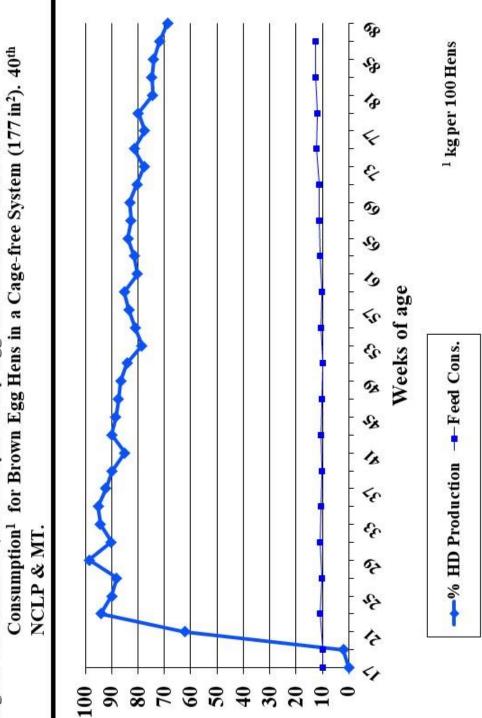



Figure 44. ISA Brown, Bi-weekly Hen-day Egg Production and Period Feed

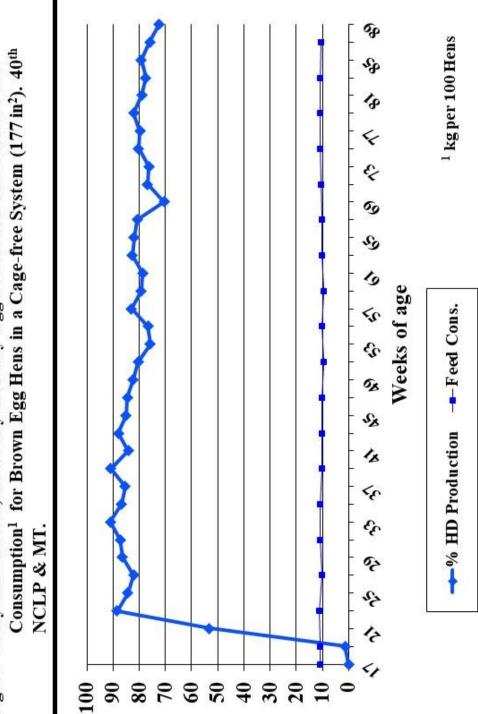



Figure 45. Hy-Line Brown, Bi-weekly Hen-day Egg Production and Period Feed

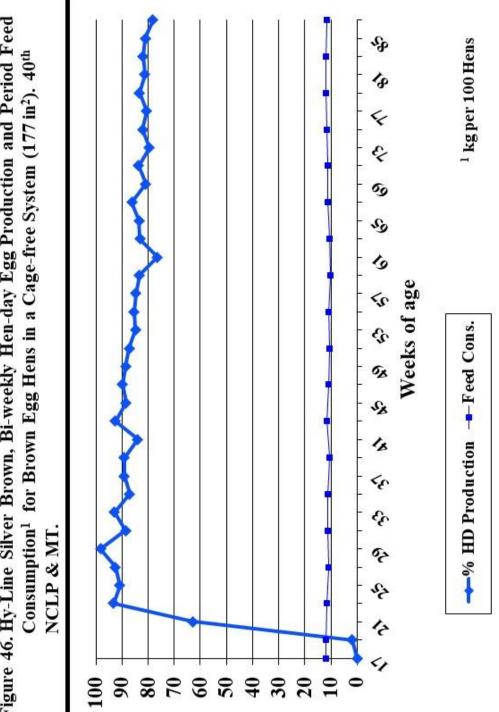



Figure 46. Hy-Line Silver Brown, Bi-weekly Hen-day Egg Production and Period Feed

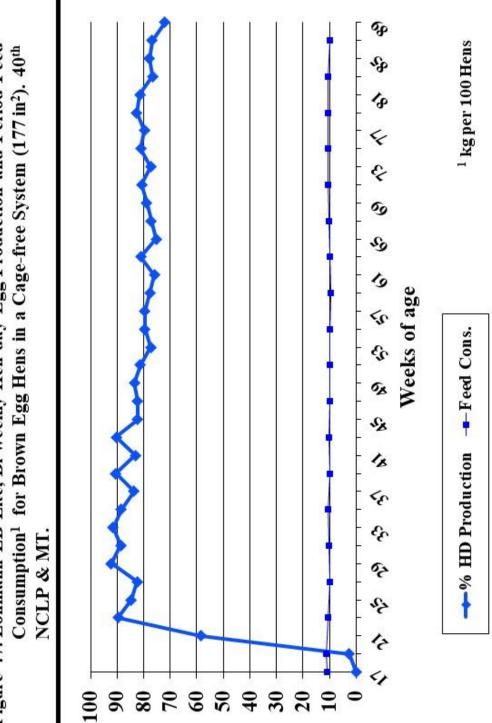



Figure 47. Lohmann LB-Lite, Bi-weekly Hen-day Egg Production and Period Feed

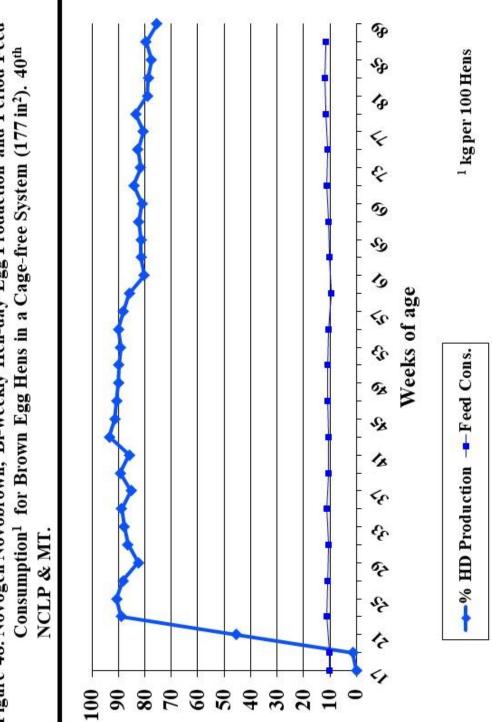
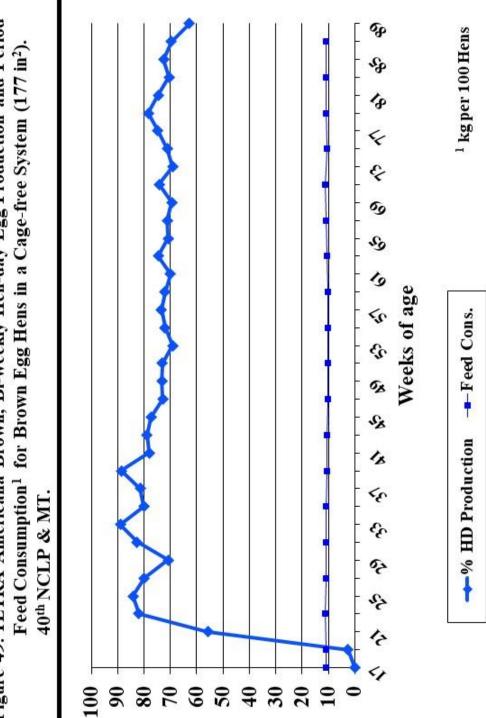
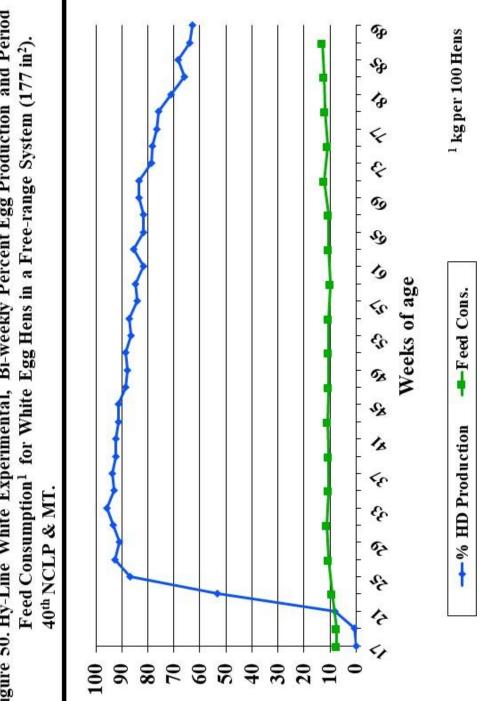
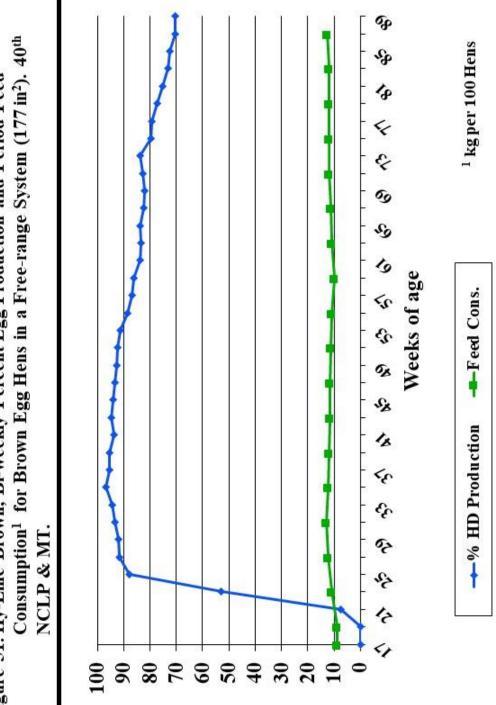





Figure 48. Novogen Novobrown, Bi-weekly Hen-day Egg Production and Period Feed






Production Figures for Laying Hens in a Free-range System: White- and Brown-egg Strains 177 in²/hen pens (1142 cm²/pen)









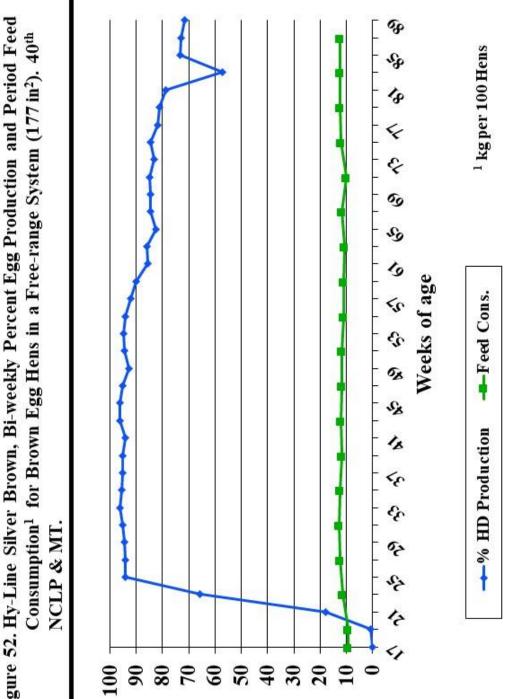
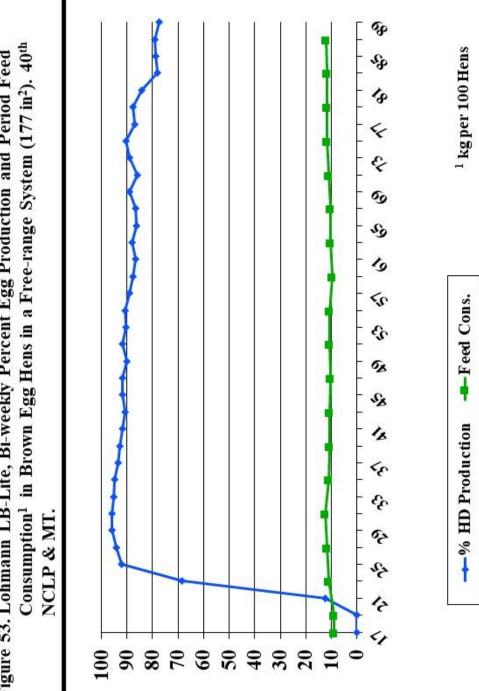




Figure 52. Hy-Line Silver Brown, Bi-weekly Percent Egg Production and Period Feed





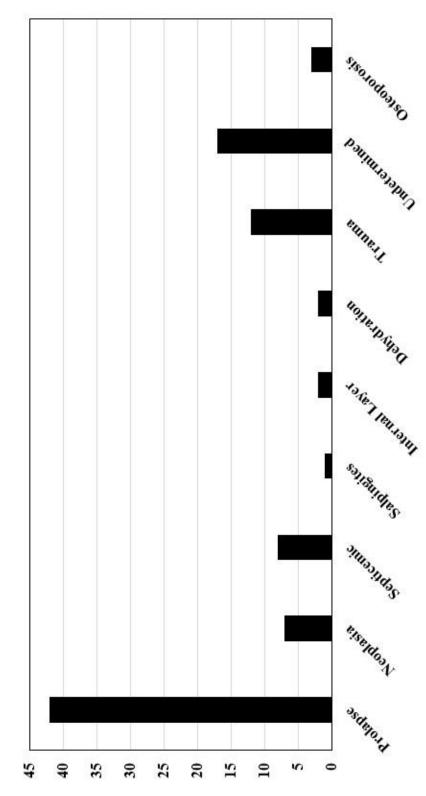
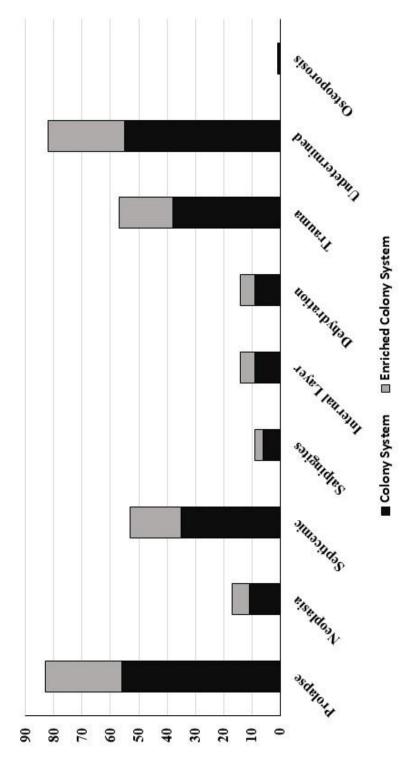
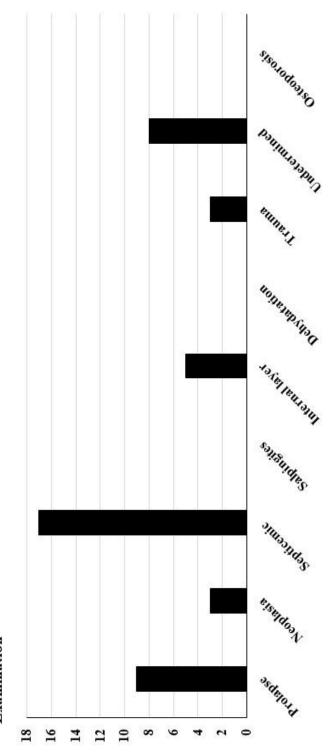
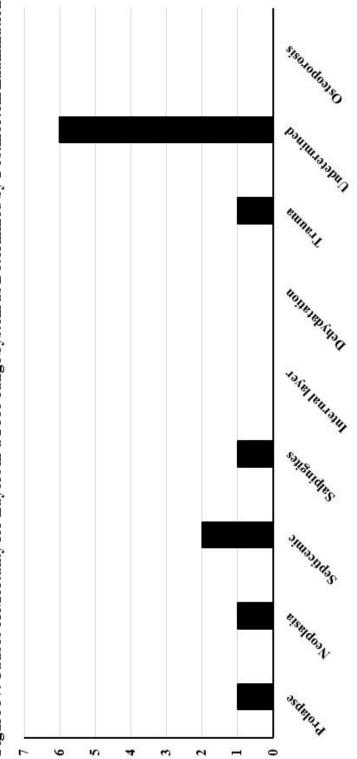






Figure 54. Causes of Mortality for Layers in a Conventional Cage System as Determined by Postmortem Examination. Figure 55. Causes of Mortality Combined for Layers in a Colony Housing System and an Enriched Colony Housing System as Determined by Postmortem Examination











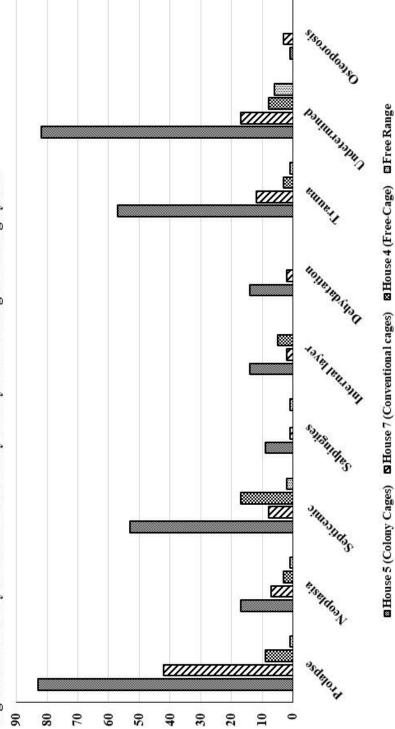



Figure 58. Summary of Causes of Mortality for Layers According to Housing System

Breeder	Stock	Category ¹	Source
Hy-Line International 2583 240 th Street Dallas Center, IA 50063	W-36	I-A	Hy-Line North America 4432 Highway 213, Box 309 Mansfield, GA 30255
	W-80	I-A	(Mansfield, PA)
	Hy-Line Brown	I-A	HyLine North America
	5		79 Industrial Rd
			Elizabethtown, PA 17022
	Hy-Line Silver Brown	I-A	(Elizabethtown, PA)
	Hy-Line White Exp.	II-A	(Mansfield, PA)
Lohmann Tierzucht Gmbh Am Seedeich 9-11 . P.O.Box 460	Lohmann LSL-Lite	I-A	Hy-Line North America 79 Industrial Rd Elizabethtown, PA 17022
D-27454 Cuxhaven, Germany	Lohmann LB-Lite	I-A	(Same)
H&N International 321 Burnett Ave South, Suite 300 Renton, Washington 98055	H&N "Nick Chick"	I-A	Feather Land Farms 32832 E. Peral Road Coberg, OR 97408
Institut de Selection Animale (A	Bovans White	I-A	Hendrix-ISA LLC
Hendrix Genetic Company)			621 Stevens Rd
ISA North America			Ephrata, PA 17522
650 Riverbend Drive, Suite C	Dekalb White	I-A	(Ephrata, PA)
Kitchener, Ontario N2K 3S2 Canada	Bovans Brown	I-A	(Ephrata, PA)
	Babcock White	I-A	Institute de Sélection Animale 50 Franklin Road Cambridge, Ontario N1R 8G6 Canada
	B 400	I-A	(Cambridge, Ontario)
	Shaver White	I-A	(Ephrata, PA)
	ISA Brown	I-A	(Ephrata, PA)
Tetra Americana, LLC	TETRA Brown	II-A	BABOLNA TETRA KFT
1105 Washington Road			Babolna TETRA
Lexington, GA 30648			Korisvolgy1
			Uraiujfalu, Hungary-EU
NOVOGEN S.A.S.	NOVOgen BROWN	I-A	Morris Hatchery
Mauguérand – Le Foeil			4090 Campbell Road
BP 265			Gillsville, GA
22 800 QUINTIN - FRANCE	NOVOgen WHITE	I-A	(Gillsville, GA)

Table 39. Entries in the 40th NCLP&MT by Breeder, Stock Suppliers, and Categories

 1  A = Entry requested, I = Extensive distribution in southeast United States, II = Little or no distribution in southeast United States